
IBM Solution & Service Company (China)

2004/11 © 2004 IBM Corporation

COBOL Programming
Fundamental

ISSC SH
Walker JIA
Version 1.0

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation2

Training Schedule

Day 1

Introduction to COBOL

COBOL Basics 1
Moring

After
noon

Exercise 1

COBOL Basics 2

Day 2

Introduction to
Sequential
Files

Processing
Sequential
Files

Day 3 Day 4
Simple iteration

with the
PERFORM
verb

Arithmetic and
Edited
Pictures

Conditions

Tables and the
PERFORM .
.. VARYING

Exercise 2 Exercise 3 Exercise 3
(Cont.)

Designing
Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation3

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation4

§ COBOL design goals.

§ Structure of COBOL programs.

§ The four divisions.

§ IDENTIFICATION DIVISION, DATA DIVISION, PROCEDURE
DIVISION.

§ Sections, paragraphs, sentences and statements.

§ Example COBOL programs.

Introduction to COBOL
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation5

§ COBOL is an acronym which stands for
Common Business Oriented Language.

§ The name indicates the target area of COBOL applications.
– COBOL is used for developing business, typically file-oriented,

applications.

– It is not designed for writing systems programs. You would not
develop an operating system or a compiler using COBOL.

§ COBOL is one of the oldest computer languages in use (it
was developed around the end of the 1950s). As a result it
has some idiosyncracies which programmers may find
irritating.

Introduction to COBOL
COBOL

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation6

§ One of the design goals was to make the language as English-
like as possible. As a consequence

– the COBOL reserved word list is quite extensive and contains
hundreds of entries.

– COBOL uses structural concepts normally associated with English
prose such as section, paragraph, sentence and so on.
As a result COBOL programs tend to be verbose.

§ Some implementations require the program text to adhere to
certain, archaic, formatting restrictions.
§ Although modern COBOL has introduced many of the

constructs required to write well structured programs it also still
retains elements which, if used, make it difficult, and in some
cases impossible, to write good programs.

Introduction to COBOL
COBOL idiosyncracies

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation7

Introduction to COBOL
Structure of COBOL programs

ProgramProgramProgram

Paragraph(s)Paragraph(s)

Sentence(s)Sentence(s)

Statement(s)Statement(s)

DivisionsDivisions

Section(s)Section(s)

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation8

§ DIVISIONS are used to identify the principal
components of the program text. There are four
DIVISIONS in all.

– IDENTIFICATION DIVISION.

– ENVIRONMENT DIVISION.

– DATA DIVISION.

– PROCEDURE DIVISION.

§ Although some of the divisions may be omitted the
sequence in which the DIVISIONS are specified is fixed
and must follow the pattern shown above.

Introduction to COBOL
The Four Divisions

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation9

§ The IDENTIFICATION DIVISION is used to supply information
about the program to the programmer and to the compiler.
§ The ENVIRONMENT DIVISION describes to the compiler the

environment in which the program will run.
§ As the name suggests, the DATA DIVISION is used to provide the

descriptions of most of the data to be processed by the program.
§ The PROCEDURE DIVISION contains the description of the

algorithm which will manipulate the data previously described. Like
other languages COBOL provides a means for specifying
sequence, selection and iteration constructs.

Introduction to COBOL
Functions of the four divisions

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation10

Introduction to COBOL
COBOL Program Text Structure

Data Descriptions

Algorithm Description

IDENTIFICATION DIVISION.IDENTIFICATION DIVISION.

DATA DIVISION.DATA DIVISION.

PROCEDURE DIVISION.PROCEDURE DIVISION.

Program Details

NOTE
The keyword
DIVISION and a
‘full-stop’ is used
in every case.

NNOTEOTE
The keyword
DIVISION and a
‘full-stop’ is used
in every case.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation11

§ The purpose of the IDENTIFICATION DIVISION is to provide
information about the program to the programmer and to the
compiler.

§ Most of the entries in the IDENTIFICATION DIVISION are directed
at the programmer and are treated by the compiler as comments.

§ An exception to this is the PROGRAM-ID clause. Every COBOL
program must have a PROGRAM-ID. It is used to enable the
compiler to identify the program.

§ There are several other informational paragraphs in the
IDENTIFICATION DIVISION but we will ignore them for the
moment.

Introduction to COBOL
IDENTIFICATION DIVISION

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation12

§ The IDENTIFICATION DIVISION has the following structure
IDENTIFICATION DIVISION.
PROGRAM-ID. ProgName.
[AUTHOR. YourName.]

§ The keywords IDENTIFICATION DIVISION represent the division
header and signal the commencement of the program text.

§ The paragraph name PROGRAM-ID is a keyword. It must be
specified immediately after the division header.

§ The program name can be up to 8 characters long.

Introduction to COBOL
The IDENTIFICATION DIVISION Syntax

IDENTIFICATION DIVISION.
PROGRAM-ID. BMJA01.
AUTHOR. Michael Coughlan.

IDENTIFICATION DIVISION.
PROGRAM-ID. BMJA01.
AUTHOR. Michael Coughlan.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation13

Introduction to COBOL
The DATA DIVISION

§ The DATA DIVISION is used to describe most of the data that a
program processes.

§ The DATA DIVISION is divided into two main sections;
– FILE SECTION.

– WORKING-STORAGE SECTION.

§ The FILE SECTION is used to describe most of the data that is
sent to, or comes from, the computer’s peripherals.

§ The WORKING-STORAGE SECTION is used to describe the
general variables used in the program.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation14

Introduction to COBOL
DATA DIVISION Syntax

§ The DATA DIVISION has the following structure

IDENTIFICATION DIVISION.
PROGRAM-ID. Sequence-Program.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.

IDENTIFICATION DIVISION.
PROGRAM-ID. Sequence-Program.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.

entries. WS
.SECTION STORAGE-WORKING

entries. Section File
.SECTION FILE
.DIVISION DATA

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation15

Introduction to COBOL
The PROCEDURE DIVISION
§ The PROCEDURE DIVISION is where all the data described

in the DATA DIVISION is processed and produced. It is here
that the programmer describes his algorithm.

§ The PROCEDURE DIVISION is hierarchical in structure and
consists of Sections, Paragraphs, Sentences and Statements.

§ Only the Section is optional. There must be at least one
paragraph, sentence and statement in the PROCEDURE
DIVISION.

§ In the PROCEDURE DIVISION paragraph and section names
are chosen by the programmer. The names used should
reflect the processing being done in the paragraph or section.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation16

Introduction to COBOL
Sections

§ A section is a block of code made up of one or more paragraphs.

§ A section begins with the section name and ends where the next
section name is encountered or where the program text ends.

§ A section name consists of a name devised by the programmer
or defined by the language followed by the word SECTION
followed by a full stop.
FILE SECTION.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation17

Introduction to COBOL
Paragraphs

§ Each section consists of one or more paragraphs.

§ A paragraph is a block of code made up of one or more
sentences.

§ A paragraph begins with the paragraph name and ends with
the next paragraph or section name or the end of the
program text.

§ The paragraph name consists of a name devised by the
programmer or defined by the language followed by a full
stop.

PrintFinalTotals.

PROGRAM-ID.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation18

Introduction to COBOL
Sentences and Statements

§ A paragraph consists of one or more sentences.
§ A sentence consists of one or more statements and is terminated by a full

stop.
MOVE .21 TO VatRate

COMPUTE VatAmount = ProductCost * VatRate.

DISPLAY "Enter name " WITH NO ADVANCING

ACCEPT StudentName

DISPLAY "Name entered was " StudentName.
§ A statement consists of a COBOL verb and an operand or operands.

SUBTRACT Tax FROM GrossPay GIVING NetPay

READ StudentFile
AT END SET EndOfFile TO TRUE

END-READ.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation19

Introduction to COBOL
A Full COBOL program

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE1.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
CalculateResult.

ACCEPT Num1.
ACCEPT Num2.
MULTIPLY Num1 BY Num2 GIVING Result.
DISPLAY "Result is = ", Result.
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE1.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
CalculateResult.

ACCEPT Num1.
ACCEPT Num2.
MULTIPLY Num1 BY Num2 GIVING Result.
DISPLAY "Result is = ", Result.
STOP RUN.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation20

Introduction to COBOL
The minimum COBOL program

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE2.

PROCEDURE DIVISION.
DisplayPrompt.

DISPLAY "I did it".
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE2.

PROCEDURE DIVISION.
DisplayPrompt.

DISPLAY "I did it".
STOP RUN.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation21

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation22

COBOL Basics 1
Overview

§ The COBOL coding rules.
§ Name construction.
§ Describing Data.
§ Data names/variables.
§ Cobol Data Types and data description.
§ The PICTURE clause.
§ The VALUE clause.
§ Literals and Figurative Constants.
§ Editing, compiling, linking and running COBOL programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation23

§ Almost all COBOL compilers treat a line of COBOL code as if it contained
two distinct areas. These are known as;

Area A and Area B

§ When a COBOL compiler recognizes these two areas, all division, section,
paragraph names, FD entries and 01 level numbers must start in Area A. All
other sentences must start in Area B.

§ Area A is four characters wide and is followed by Area B.

COBOL Basics 1
COBOL coding rules

IDENTIFICATION DIVISION.
PROGRAM-ID. Program.
* This is a comment. It starts
* with an asterisk in column 1

IDENTIFICATION DIVISION.
PROGRAM-ID. Program.
* This is a comment. It starts
* with an asterisk in column 1

*：Identification Area（7th byte）
A：AreaA（8th～11th byte）
B：Area B（12th～72th byte）

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation24

§ All user defined names, such as data names, paragraph names,
section names and mnemonic names, must adhere to the following
rules;

– They must contain at least one character and not more than 30
characters.

– They must contain at least one alphabetic character and they must
not begin or end with a hyphen.

– They must be contructed from the characters A to Z, the number 0 to
9 and the hyphen. e.g. TotalPay, Gross-Pay,
PrintReportHeadings, Customer10-Rec

§ All data-names should describe the data they contain.
§ All paragraph and section names should describe the function of

the paragraph or section.

COBOL Basics 1
Name Construction

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation25

There are basically three kinds of data used in COBOL programs;
1. Variables.
2. Literals.
3. Figurative Constants.

Unlike other programming languages, COBOL does not support
user defined constants.

COBOL Basics 1
Describing DATA

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation26

§ A variable is a named location in memory into which a program can put
data and from which it can retrieve data.

§ A data-name or identifier is the name used to identify the area of memory
reserved for the variable.

§ Variables must be described in terms of their type and size.

§ Every variable used in a COBOL program must have a description in the
DATA DIVISION.

COBOL Basics 1
Data-Names / Variables

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation27

StudentName

MOVE "JOHN" TO StudentName.
DISPLAY "My name is ", StudentName.

01 01 StudentNameStudentName PIC X(6) VALUE SPACESPIC X(6) VALUE SPACES..

COBOL Basics 1
Using Variables

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation28

J O H N

StudentName

MOVE "JOHN" TO MOVE "JOHN" TO StudentNameStudentName..
DISPLAY "My name is ", StudentName.

01 StudentName PIC X(6) VALUE SPACES.

COBOL Basics 1
Using Variables

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation29

StudentName

MOVE "JOHN" TO StudentName.
DISPLAY "My name is ", DISPLAY "My name is ", StudentNameStudentName..

01 StudentName PIC X(6) VALUE SPACES.

My name is JOHN

J O H NJ O H N

COBOL Basics 1
Using Variables

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation30

§ COBOL is not a “typed” language and the distinction between some of
the data types available in the language is a little blurred.

§ For the time being we will focus on just two data types,
– numeric

– text or string

§ Data type is important because it determines the operations which are
valid on the type.

§ COBOL is not as rigorous in the application of typing rules as other
languages.

For example, some COBOL “numeric” data items may, from time to time,
have values which are not “numeric”!

COBOL Basics 1
COBOL Data Types

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation31

§ In “typed” languages simply specifying the type of a data item provides
quite a lot of information about it.

§ The type usually determines the range of values the data item can store.
For instance a CARDINAL item can store values between 0..65,535 and an

INTEGER between -32,768..32,767

§ From the type of the item the compiler can establish how much memory to
set aside for storing its values.

§ If the type is “REAL” the number of decimal places is allowed to vary
dynamically with each calculation but the amount of the memory used to
store a real number is fixed.

COBOL Basics 1
Quick Review of “Data Typing”

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation32

§ Because COBOL is not typed it employs a different mechanism for
describing the characteristics of the data items in the program.

§ COBOL uses what could be described as a “declaration by
example” strategy.

§ In effect, the programmer provides the system with an example, or
template, or PICTURE of what the data item looks like.

§ From the “picture” the system derives the information necessary to
allocate it.

COBOL Basics 1
COBOL data description

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation33

§ To create the required ‘picture’ the programmer uses a set of symbols.

§ The following symbols are used frequently in picture clauses;
9 (the digit nine) is used to indicate the occurrence of a digit at the corresponding

position in the picture.

X (the character X) is used to indicate the occurrence of any character from the
character set at the corresponding position in the picture

V (the character V) is used to indicate position of the decimal point in a numeric
value! It is often referred to as the “assumed decimal point” character.

S (the character S) indicates the presence of a sign and can only appear at the
beginning of a picture.

COBOL Basics 1
COBOL ‘PICTURE’ Clause symbols

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation34

§ Some examples
PICTURE 999 a three digit (+ive only) integer

PICTURE S999 a three digit (+ive/-ive) integer

PICTURE XXXX a four character text item or string

PICTURE 99V99 a +ive ‘real’ in the range 0 to 99.99

PICTURE S9V9 a +ive/-ive ‘real’ in the range ?

§ If you wish you can use the abbreviation PIC.

§ Numeric values can have a maximum of 18 (eighteen) digits (i.e. 9’s).

§ The limit on string values is usually system-dependent.

COBOL Basics 1
COBOL ‘PICTURE’ Clauses

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation35

§ Recurring symbols can be specified using a ‘repeat’ factor inside round
brackets

PIC 9(6) is equivalent to PICTURE 999999

PIC 9(6)V99 is equivalent to PIC 999999V99

PICTURE X(10) is equivalent to PIC XXXXXXXXXX

PIC S9(4)V9(4) is equivalent to PIC S9999V9999

PIC 9(18) is equivalent to PIC 999999999999999999

COBOL Basics 1
Abbreviating recurring symbols

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation36

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 999 VALUE ZEROS.
01 VatRate PIC V99 VALUE .18.
01 StudentName PIC X(10) VALUE SPACES.

§ In COBOL a variable declaration consists of a line containing the following
items;

1. A level number.

2. A data-name or identifier.

3. A PICTURE clause.

§ We can give a starting value to variables by means of an extension to the
picture clause called the value clause.

Num1 VatRate StudentNameNum1 VatRate StudentName

000000 .18.18

DDATAATA

COBOL Basics 1
Declaring DATA in COBOL

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation37

§ String/Alphanumeric literals are enclosed in quotes and may consists of
alphanumeric characters

e.g. "Michael Ryan", "-123", "123.45"

§ Numeric literals may consist of numerals, the decimal point and the plus or
minus sign. Numeric literals are not enclosed in quotes.

e.g. 123, 123.45, -256, +2987

COBOL Basics 1
COBOL Literals

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation38

§ COBOL provides its own, special constants called Figurative Constants.

SPACE or SPACES = ¨

ZERO or ZEROS or ZEROS = 0

QUOTE or QUOTES = "

HIGH-VALUE or HIGH-VALUES = Max Value

LOW-VALUE or LOW-VALUES = Min Value

ALL literal = Fill With Literal

SPACE or SPACESSPACE or SPACES = ¨

ZERO or ZEROS or ZEROSZERO or ZEROS or ZEROS = 0

QUOTE or QUOTESQUOTE or QUOTES = "

HIGHHIGH--VALUE or HIGHVALUE or HIGH--VALUESVALUES = Max Value

LOWLOW--VALUE or LOWVALUE or LOW--VALUESVALUES = Min Value

ALL ALL literalliteral = Fill With Literal

COBOL Basics 1
Figurative Constants

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation39

01 GrossPay PIC 9(5)V99 VALUE 13.5.

MOVE TO GrossPay.

01 GrossPay PIC 9(5)V99 VALUE 13.5.

MOVE TO GrossPay.ZERO
ZEROS
ZEROES

StudentName PIC X(10) VALUE "MIKE".

MOVE ALL "-" TO StudentName.

StudentName PIC X(10) VALUE "MIKE".

MOVE ALL "-" TO StudentName.
StudentName

M I K E M I K E ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈

GrossPay
0 0 0 1 3 5 0

ñ
l

COBOL Basics 1
Figurative Constants - Examples

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation40

01 GrossPay PIC 9(5)V99 VALUE 13.5.

MOVE TO GrossPay.

01 GrossPay PIC 9(5)V99 VALUE 13.5.

MOVE TO GrossPay.ZERO
ZEROSZEROES

01 StudentName PIC X(10) VALUE "MIKE".

MOVE ALL "-" TO StudentName.

01 StudentName PIC X(10) VALUE "MIKE".

MOVE ALL "-" TO StudentName.
StudentName

-- -- -- -- -- -- -- -- -- --

GrossPay
0 0 0 0 0 0 0

ñ
l

COBOL Basics 1
Figurative Constants - Examples

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation41

COBOL Basics 1
Editing, Compiling, Running

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation42

COBOL Basics 1
Editing, Compiling, Running

//EV6098A JOB (F9500B,WD01X),'EV6098',NOTIFY=EV6098,
// MSGLEVEL=(1,1),
// CLASS=M,MSGCLASS=R,USER=WD01UJ1,PASSWORD=MON10JUN
//***
//* UIBMCL: COMPILE AND LINKEDIT A COBOL PROGRAM
//*
//UIBMCL PROC WSPC=500,NAME=TEMPNAME
//*
//* COMPILE THE COBOL PROGRAM
//*
//COB EXEC PGM=IGYCRCTL,
// PARM='APOST,LIB,NOSEQ,RENT,TRUNC(BIN),LANG(UE)‘
//STEPLIB DD DSN=SYS1.IGY.SIGYCOMP,DISP=SHR
//SYSIN DD DSN=WD01I.DS.COBOL&SRC(&NAME),DISP=SHR
//SYSLIB DD DSN=WD01I.DS.COPY©,DISP=SHR <=== BLK 3120
// DD DSN=MQM.SCSQCOBC,DISP=SHR
//SYSLIN DD DSN=WD01I.DS.UT.OBJ&SRC(&NAME),DISP=SHR
//OUTDEF OUTPUT PRMODE=SOSI2,CHARS=(KN10,KNJE)
//SYSPRINT DD SYSOUT=*,OUTPUT=*.OUTDEF
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=3390
//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=3390

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation43

COBOL Basics 1
Editing, Compiling, Running

//*
//* LINKEDIT IF THE COMPILE
//* RETURN CODES ARE 4 OR LESS
//*
//LKED EXEC PGM=HEWL,PARM='XREF',COND=(4,LT,COB)
//SYSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD DSN=DSNCFD.SDSNEXIT,DISP=SHR
// DD DSN=DSNCFD.DSNLOAD,DISP=SHR
//OBJECT DD DSN=WD01I.DS.UT.OBJ&SRC,DISP=SHR
//CSQSTUB DD DSN=MQM.SCSQLOAD,DISP=SHR
//CEEUOPT DD DSN=WD01I.DS.LOAD00,DISP=SHR
//SYSLMOD DD DSN=WD01I.DS.UT.LOAD&SRC(&NAME),DISP=SHR
//SYSLIN DD DSN=WD01I.DS.UT.OBJ&SRC(&NAME),DISP=SHR
// DD DSN=WD01I.CSL1.PARMLIB(DSNELI),DISP=SHR
// DD DSN=WD01I.DS.PARAM00(CEEUOPT),DISP=SHR
//OUTDEF OUTPUT PRMODE=SOSI2,CHARS=(KN10,KNJE)
//SYSPRINT DD SYSOUT=*,OUTPUT=*.OUTDEF
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD SPACE=(4096,(500,500)),UNIT=3390
// PEND
//*
//COMP EXEC UIBMCL,SRC=00,COPY=00,NAME=BUAC25
//COB.SYSIN DD DSN=WD01I.EV6098.COBOL00(BUAC25)

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation44

COBOL Basics 1
Editing, Compiling, Running

//EV6098G2 JOB (F9500B,WD01X),CFD,TIME=1440,
// REGION=8M,CLASS=M,MSGCLASS=R,MSGLEVEL=(1,1),
// NOTIFY=EV6098,USER=WD01UJ1,PASSWORD=MON10JUN
//JOBLIB DD DSN=WD01I.DS.UT.LOAD00,DISP=SHR
// DD DSN=DSNCFD.DSNLOAD,DISP=SHR
//**
//SCR EXEC DSNDCR
DSN=WD01I.DS.PCDERR.CHK.REPORT

//*---
//* BUAC25 DUW25 CREATE ***
//*---
//STEP160 EXEC PGM=BUAC25,COND=(4,LT)
//IDUW13 DD DSN=&&DUW13T,DISP=(OLD,DELETE)
//UAC250 DD DSN=WD01I.DS.PCDERR.CHK.REPORT,DISP=(,CATLG),
// UNIT=3390,VOL=SER=EGF001,SPACE=(CYL,(15,15),RLSE),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//OFSW16 DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
/*

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation45

EXERCISE 1

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation46

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation47

COBOL Basics 2
Overview

Level Numbers.

Group and elementary data items.

Group item PICTURE clauses.

The MOVE. MOVEing numeric items.

DISPLAY and ACCEPT.

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation48

H E N N E S S Y R M 9 2 3 0 1 6 5 L M 5 1 0 5 5 0 F
StudentDetails

WORKING-STORAGE SECTION.
01 StudentDetails PIC X(26).
WORKING-STORAGE SECTION.
01 StudentDetails PIC X(26).

COBOL Basics 2
Group Items/Records

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation49

H E N N E S S Y R M 9 2 3 0 1 6 5 L M 5 1 0 5 5 0 F

StudentDetails

StudentName StudentId CourseCode Grant Gender

WORKING-STORAGE SECTION.
01 StudentDetails.

02 StudentName PIC X(10).
02 StudentId PIC 9(7).
02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

WORKING-STORAGE SECTION.
01 StudentDetails.

0202 StudentNameStudentName PIC X(10).PIC X(10).
0202 StudentIdStudentId PIC 9(7).PIC 9(7).
0202 CourseCodeCourseCode PIC X(4).PIC X(4).
0202 GrantGrant PIC 9(4).PIC 9(4).
0202 GenderGender PIC X.PIC X.

COBOL Basics 2
Group Items/Records

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation50

H E N N E S S Y R M 9 2 3 0 1 6 5 L M 5 1 0 5 5 0 F
StudentDetails

Surname Initials

WORKING-STORAGE SECTION.
01 StudentDetails.

02 StudentName.
03 Surname PIC X(8).
03 Initials PIC XX.

02 StudentId PIC 9(7).
02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

WORKING-STORAGE SECTION.
01 StudentDetails.

0202 StudentNameStudentName..
03 Surname03 Surname PIC X(8).PIC X(8).
03 Initials03 Initials PIC XX.PIC XX.

0202 StudentIdStudentId PIC 9(7).PIC 9(7).
0202 CourseCodeCourseCode PIC X(4).PIC X(4).
0202 GrantGrant PIC 9(4).PIC 9(4).
0202 GenderGender PIC X.PIC X.

StudentName StudentId CourseCode Grant Gender

COBOL Basics 2
Group Items/Records

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation51

§ In COBOL, level numbers are used to decompose a structure into it’s
constituent parts.

§ In this hierarchical structure the higher the level number, the lower the item
is in the hierarchy. At the lowest level the data is completely atomic.

§ The level numbers 01 through 49 are general level numbers but there are
also special level numbers such as 66, 77 and 88.

§ In a hierarchical data description what is important is the relationship of the
level numbers to one another, not the actual level numbers used.

COBOL Basics 2
LEVEL Numbers express DATA hierarchy

01 StudentDetails.
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 StudentId PIC 9(7).
02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

01 StudentDetails.
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 StudentId PIC 9(7).
02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

01 StudentDetails.
05 StudentName.

10 Surname PIC X(8).
10 Initials PIC XX.

05 StudentId PIC 9(7).
05 CourseCode PIC X(4).
05 Grant PIC 9(4).
05 Gender PIC X.

01 StudentDetails.
05 StudentName.

10 Surname PIC X(8).
10 Initials PIC XX.

05 StudentId PIC 9(7).
05 CourseCode PIC X(4).
05 Grant PIC 9(4).
05 Gender PIC X.

=

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation52

§ In COBOL the term “group item” is used to describe a data item which has
been further subdivided.

– A Group item is declared using a level number and a data name. It cannot have a picture
clause.

– Where a group item is the highest item in a data hierarchy it is referred to as a record and
uses the level number 01.

§ The term “elementary item” is used to describe data items which are atomic;
that is, not further subdivided.

§ An elementary item declaration consists of;
1. a level number,
2. a data name
3. picture clause.

An elementary item must have a picture clause.

§ Every group or elementary item declaration must be followed by a full stop.

COBOL Basics 2
Group and elementary items

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation53

§ Picture clauses are NOT specified for ‘group’ data items because the
size a group item is the sum of the sizes of its subordinate, elementary
items and its type is always assumed to be PIC X.

§ The type of a group items is always assumed to be PIC X because
group items may have several different data items and types
subordinate to them.

§ An X picture is the only one which could support such collections.

COBOL Basics 2
PICTUREs for Group Items

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation54

§ In “strongly typed” languages like Modula-2, Pascal or ADA the
assignment operation is simple because assignment is only allowed
between data items with compatible types.

§ The simplicity of assignment in these languages is achieved at the “cost”
of having a large number of data types.

§ In COBOL there are basically only three data types,
Alphabetic (PIC A)
Alphanumeric (PIC X)
Numeric (PIC 9)

§ But this simplicity is achieved only at the cost of having a very complex
assignment statement.

§ In COBOL assignment is achieved using the MOVE verb.

COBOL Basics 2
Assignment in COBOL

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation55

§ The MOVE copies data from the source identifier or literal to one or
more destination identifiers.

§ The source and destination identifiers can be group or elementary
data items.

§ When the destination item is alphanumeric or alphabetic (PIC X or
A) data is copied into the destination area from left to right with
space filling or truncation on the right.

§ When data is MOVEd into an item the contents of the item are
completely replaced. If the source data is too small to fill the
destination item entirely the remaining area is zero or space filled.

COBOL Basics 2
The MOVE Verb

{ }... TO MOVE Identifier
Literal
Identifier

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation56

MOVE “RYAN” TO Surname.
MOVE “FITZPATRICK” TO Surname.
MOVE “RYAN” TO Surname.
MOVE “FITZPATRICK” TO Surname.

01 Surname PIC X(8).
C O U G H L A N

COBOL Basics 2
MOVEing Data

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation57

R Y A N

MOVE “RYAN” TO Surname.
MOVE “FITZPATRICK” TO Surname.
MOVE MOVE ““RYANRYAN”” TO Surname.TO Surname.
MOVE “FITZPATRICK” TO Surname.

01 Surname PIC X(8).

COBOL Basics 2
MOVEing Data

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation58

MOVE “RYAN” TO Surname.
MOVE “FITZPATRICK” TO Surname.
MOVE “RYAN” TO Surname.
MOVE MOVE ““FITZPATRICKFITZPATRICK”” TO Surname.TO Surname.

01 Surname PIC X(8).
F I T Z P A T R I C K

COBOL Basics 2
MOVEing Data

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation59

§ When the destination item is numeric, or edited numeric, then data is
aligned along the decimal point with zero filling or truncation as necessary.

§ When the decimal point is not explicitly specified in either the source or
destination items, the item is treated as if it had an assumed decimal point
immediately after its rightmost character.

COBOL Basics 2
MOVEing to a numeric item

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation60

ñ
l

MOVE ZEROS TO GrossPay.

MOVE 12.4 TO GrossPay.

MOVE 123.456 TO GrossPay.

MOVE 12345.757 TO GrossPay.

ñ
l

ñ
l

ñ
l

GrossPay

GrossPay

GrossPay

GrossPay

COBOL Basics 2
MOVEing to a numeric item

01 GrossPay PIC 9(4)V99.

0 0 0 0 0 0

0 0 1 2 4 0

0 1 2 3 4 5 6

1 2 3 4 5 7 5 7

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation61

MOVE 1234 TO CountyPop.

MOVE 12.4 TO CountyPop.

MOVE 154 TO Price.

MOVE 3552.75 TO Price.

01 CountyPop PIC 999.
01 Price PIC 999V99.

Price

CountyPop

COBOL Basics 2
MOVEing to a numeric item

CountyPop

ñ
l

Price

ñ
l

ñ
l

ñ
l

3 5 5 2 7 5

1 5 4 0 0

0 1 2 4

1 2 3 4

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation62

Certain combinations of sending and receiving data types are not
permitted (even by COBOL).

COBOL Basics 2
Legal MOVEs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation63

§ From time to time it may be useful to display messages and data
values on the screen.

§ A simple DISPLAY statement can be used to achieve this.

§ A single DISPLAY can be used to display several data items or
literals or any combination of these.

§ The WITH NO ADVANCING clause suppresses the carriage
return/line feed.

[][]ADVANCING NO WITHUPON

...
Literal
Identifier

Literal
Identifier

 DISPLAY

 Name-Mnemonic

COBOL Basics 2
The DISPLAY Verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation64

01 CurrentDate PIC 9(6).
* YYMMDD
01 DayOfYear PIC 9(5).
* YYDDD
01 Day0fWeek PIC 9.
* D (1=Monday)
01 CurrentTime PIC 9(8).
* HHMMSSss s = S/100

01 01 CurrentDateCurrentDate PIC 9(6).PIC 9(6).
* YYMMDD
01 01 DayOfYearDayOfYear PIC 9(5).PIC 9(5).
* YYDDD
01 Day0fWeek01 Day0fWeek PIC 9.PIC 9.
* D (1=Monday)
01 01 CurrentTimeCurrentTime PIC 9(8).PIC 9(8).
* HHMMSSss s = S/100

[]

TIME
WEEK-OF-DAY

DAY
DATE

 FROM Identifier ACCEPT 2.Format

name-Mnemonic FROM Identifier ACCEPT 1.Format

COBOL Basics 2
The ACCEPT verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation65

PROCEDURE DIVISION.
Begin.

DISPLAY "Enter student details using template below".
DISPLAY "NNNNNNNNNNSSSSSSSCCCCGGGGS ".
ACCEPT StudentDetails.
ACCEPT CurrentDate FROM DATE.
ACCEPT DayOfYear FROM DAY.
ACCEPT CurrentTime FROM TIME.
DISPLAY "Name is ", Initials SPACE Surname.
DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
DISPLAY "Today is day " YearDay " of the year".
DISPLAY "The time is " CurrentHour ":" CurrentMinute.
STOP RUN.

PROCEDURE DIVISION.
Begin.

DISPLAY "Enter student details using template below".
DISPLAY "NNNNNNNNNNSSSSSSSCCCCGGGGS ".
ACCEPT StudentDetails.
ACCEPT CurrentDate FROM DATE.
ACCEPT DayOfYear FROM DAY.
ACCEPT CurrentTime FROM TIME.
DISPLAY "Name is ", Initials SPACE Surname.
DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
DISPLAY "Today is day " YearDay " of the year".
DISPLAY "The time is " CurrentHour ":" CurrentMinute.
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.

02 StudentName.
03 Surname PIC X(8).
03 Initials PIC XX.

02 StudentId PIC 9(7).
02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

01 CurrentDate.
02 CurrentYear PIC 99.
02 CurrentMonth PIC 99.
02 CurrentDay PIC 99.

01 DayOfYear.
02 FILLER PIC 99.
02 YearDay PIC 9(3).

01 CurrentTime.
02 CurrentHour PIC 99.
02 CurrentMinute PIC 99.
02 FILLER PIC 9(4).

IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.

02 StudentName.
03 Surname PIC X(8).
03 Initials PIC XX.

02 StudentId PIC 9(7).
02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

01 CurrentDate.
02 CurrentYear PIC 99.
02 CurrentMonth PIC 99.
02 CurrentDay PIC 99.

01 DayOfYear.
02 FILLER PIC 99.
02 YearDay PIC 9(3).

01 CurrentTime.
02 CurrentHour PIC 99.
02 CurrentMinute PIC 99.
02 FILLER PIC 9(4).

Enter student details using template below
NNNNNNNNNNSSSSSSSCCCCGGGGS
COUGHLANMS9476532LM511245M
Name is MS COUGHLAN
Date is 24 01 94
Today is day 024 of the year
The time is 22:23

Enter student details using template below
NNNNNNNNNNSSSSSSSCCCCGGGGS
COUGHLANMS9476532LM511245M
Name is MS COUGHLAN
Date is 24 01 94
Today is day 024 of the year
The time is 22:23

COBOL Basics 2
Run of Accept and Display program

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation66

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation67

§ Files, records, fields.

§ The record buffer concept.

§ The SELECT and ASSIGN clause.

§ OPEN, CLOSE, READ and WRITE verbs.

Introduction to Sequential Files
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation68

§ COBOL is generally used in situations where the volume of
data to be processed is large.

§ These systems are sometimes referred to as “data intensive”
systems.

§ Generally, large volumes of data arise not because the data is
inherently voluminous but because the same items of
information have been recorded about a great many instances
of the same object.

Introduction to Sequential Files
COBOL's forte

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation69

§ We use the term FIELD to describe an item of information we are
recording about an object

(e.g. StudentName, DateOfBirth, CourseCode).

§ We use the term RECORD to describe the collection of fields which
record information about an object

(e.g. a StudentRecord is a collection of fields recording information about
a student).

§ We use the term FILE to describe a collection of one or more
occurrences (instances) of a record type (template).

§ It is important to distinguish between the record occurrence (i.e. the
values of a record) and the record type (i.e. the structure of the record).
Every record in a file has a different value but the same structure.

Introduction to Sequential Files
Files, Records, Fields

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation70

StudId StudName DateOfBirth
9723456 COUGHLAN 10091961
9724567 RYAN 31121976
9534118 COFFEY 23061964
9423458 O'BRIEN 03111979
9312876 SMITH 12121976

StudIdStudId StudNameStudName DateOfBirthDateOfBirth
9723456 COUGHLAN 10091961
9724567 RYAN 31121976
9534118 COFFEY 23061964
9423458 O'BRIEN 03111979
9312876 SMITH 12121976

STUDENTS.DATSTUDENTS.DAT

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudId PIC 9(7).
02 StudName PIC X(8).
02 DateOfBirth PIC X(8).

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudId PIC 9(7).
02 StudName PIC X(8).
02 DateOfBirth PIC X(8).

occurrencesoccurrences

Record Type Record Type
(Template)(Template)
(Structure)(Structure)

Introduction to Sequential Files
Files, Records, Fields

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation71

§ Files are repositories of data that reside on backing storage (hard disk
or magnetic tape).

§ A file may consist of hundreds of thousands or even millions of
records.

§ Suppose we want to keep information about all the TV license holders
in the country. Suppose each record is about 150 characters/bytes
long. If we estimate the number of licenses at 1 million this gives us a
size for the file of 150 X 1,000,000 = 150 megabytes.

§ If we want to process a file of this size we cannot do it by loading the
whole file into the computer’s memory at once.

§ Files are processed by reading them into the computer’s memory one
record at a time.

Introduction to Sequential Files
How files are processed

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation72

§ To process a file records are read from the file into the computer’s
memory one record at a time.

§ The computer uses the programmers description of the record (i.e.
the record template) to set aside sufficient memory to store one
instance of the record.

§ Memory allocated for storing a record is usually called a “record
buffer”

§ The record buffer is the only connection between the program and
the records in the file.

Introduction to Sequential Files
Record Buffers

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation73

IDENTIFICATION DIVISION.
etc.
ENVIRONMENT DIVISION.
etc.
DATA DIVISION.
FILE SECTION.

ProgramProgram

RecordBufferRecordBuffer
DeclarationDeclaration

STUDENTS.DAT

DISK Record Instance

Introduction to Sequential Files
Record Buffers

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation74

§ If your program processes more than one file you will have to
describe a record buffer for each file.

§ To process all the records in an INPUT file each record instance
must be copied (read) from the file into the record buffer when
required.

§ To create an OUTPUT file containing data records each record
must be placed in the record buffer and then transferred (written) to
the file.

§ To transfer a record from an input file to an output file we will have
to

read the record into the input record buffer
transfer it to the output record buffer
write the data to the output file from the output record buffer

Introduction to Sequential Files
Implications of ‘Buffers’

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation75

01 StudentDetails.
§ Student Id. 02 StudentId PIC 9(7).
§ Student Name. 02 StudentName.

Surname 03 Surname PIC X(8).
Initials 03 Initials PIC XX.

§ Date of Birth 02 DateOfBirth.
Year of Birth 03 YOBirth PIC 99.
Month of Birth 03 MOBirth PIC 99.
Day of Birth 03 DOBirth PIC 99.

§ Course Code 02 CourseCode PIC X(4).
§ Value of grant 02 Grant PIC 9(4).
§ Gender 02 Gender PIC X.

01 StudentDetails.
§ Student Id. 02 StudentId PIC 9(7).
§ Student Name. 02 StudentName.

Surname 03 Surname PIC X(8).
Initials 03 Initials PIC XX.

§ Date of Birth 02 DateOfBirth.
Year of Birth 03 YOBirth PIC 99.
Month of Birth 03 MOBirth PIC 99.
Day of Birth 03 DOBirth PIC 99.

§ Course Code 02 CourseCode PIC X(4).
§ Value of grant 02 Grant PIC 9(4).
§ Gender 02 Gender PIC X.

Student Details.Student Details.

Introduction to Sequential Files
Creating a Student Record

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation76

§ The record type/template/buffer of every file used in a program
must be described in the FILE SECTION by means of an FD (file
description) entry.

§ The FD entry consists of the letters FD and an internal file name.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

Introduction to Sequential Files
Describing the record buffer in COBOL

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation77

STUDENTS.DAT

§ The internal file name used in the FD entry is connected to an external file (on
disk or tape) by means of the Select and Assign clause.

DISK

Introduction to Sequential Files
The Select and Assign Clause

//STEP160 EXEC PGM=BUAC25,COND=(4,LT)
//STUDENTS DD DSN= STUDENTS.DAT,DISP=SHR

//STEP160 EXEC PGM=BUAC25,COND=(4,LT)
//STUDENTS DD DSN= STUDENTS.DAT,DISP=SHR

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT StudentFile
ASSIGN TO “STUDENTS”.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT StudentFile
ASSIGN TO “STUDENTS”.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation78

§ LINE SEQUENTIAL means each record is followed by the
carriage return and line feed characters.

§ RECORD SEQUENTIAL means that the file consists of a
stream of bytes. Only the fact that we know the size of
each record allows us to retrieve them.

Introduction to Sequential Files
Select and Assign Syntax

].SEQUENTIAL
RECORD
LINE

 IS ONORGANIZATI[

eleReferencExternalFi TO ASSIGN FileName SELECT

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation79

§ OPEN
Before your program can access the data in an input file or place data in an
output file you must make the file available to the program by OPENing it.

§ READ
The READ copies a record occurrence/instance from the file and places it in
the record buffer.

§ WRITE
The WRITE copies the record it finds in the record buffer to the file.

§ CLOSE
You must ensure that (before terminating) your program closes all the files it
has opened. Failure to do so may result in data not being written to the file or
users being prevented from accessing the file.

Introduction to Sequential Files
COBOL file handling Verbs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation80

§ When you open a file you have to indicate to the system
what how you want to use it (e.g. INPUT, OUTPUT,
EXTEND) so that the system can manage the file correctly.

§ Opening a file does not transfer any data to the record
buffer, it simply provides access.

Introduction to Sequential Files
OPEN and CLOSE verb syntax

...leNameInternalFi OPEN

EXTEND
OUTPUT
INPUT

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation81

§ Once the system has opened a file and made it available to the program
it is the programmers responsibility to process it correctly.

§ Remember, the file record buffer is our only connection with the file and
it is only able to store a single record at a time.

§ To process all the records in the file we have to transfer them, one
record at a time, from the file to the buffer.

§ COBOL provides the READ verb for this purpose.

Introduction to Sequential Files
The READ verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation82

§ The InternalFilename specified must be a file that has been
OPENed for INPUT.

§ The NEXT RECORD clause is optional and generally not used.

§ Using INTO Identifier clause causes the data to be read into the
record buffer and then copied from there to the specified
Identifier in one operation.

– When this option is used there will be two copies of the data. It is
the equivalent of a READ followed by a MOVE.

Introduction to Sequential Files
READ verb syntax

[]
[]

READ-END
lockStatementB END AT

Identifier INTO
RECORD NEXT lenameInternalFi READ

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation83

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords

AT END MOVE HIGH-VALUES TO StudentRecord
END-READ

END-PERFORM.

FF rr aa nn kk CC uu rr tt aa ii nn99 33 33 44 55 66 77 LL MM 00 55 11
StudentID StudentName Course.

StudentRecord

FF rr aa nn kk CC uu rr tt aa ii nn99 33 33 44 55 66 77 LL MM 00 55 11
T h o m a s H e a l y9 3 8 3 7 1 5 L M 0 6 8
T o n y O ‘ B r i a n9 3 4 7 2 9 2 L M 0 5 1
B i l l y D o w n e s9 3 7 8 8 1 1 L M 0 2 1

EOF

Introduction to Sequential Files
How the READ works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation84

TT hh oo mm aa ss HH ee aa ll yy99 33 88 33 77 11 55 LL MM 00 66 88
StudentID StudentName Course.

StudentRecord

F r a n k C u r t a i n9 3 3 4 5 6 7 L M 0 5 1
TT hh oo mm aa ss HH ee aa ll yy99 33 88 33 77 11 55 LL MM 00 66 88
T o n y O ‘ B r i a n9 3 4 7 2 9 2 L M 0 5 1
B i l l y D o w n e s9 3 7 8 8 1 1 L M 0 2 1

EOF
PERFORM UNTIL StudentRecord = HIGH-VALUES

READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord

END-READ
END-PERFORM.

Introduction to Sequential Files
How the READ works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation85

TT oo nn yy OO ‘‘ BB rr ii aa nn99 33 44 77 22 99 22 LL MM 00 55 11
StudentID StudentName Course.

StudentRecord

F r a n k C u r t a i n9 3 3 4 5 6 7 L M 0 5 1
T h o m a s H e a l y9 3 8 3 7 1 5 L M 0 6 8
TT oo nn yy OO ‘‘ BB rr ii aa nn99 33 44 77 22 99 22 LL MM 00 55 11
B i l l y D o w n e s9 3 7 8 8 1 1 L M 0 2 1

EOF
PERFORM UNTIL StudentRecord = HIGH-VALUES

READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord

END-READ
END-PERFORM.

Introduction to Sequential Files
How the READ works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation86

BB ii ll ll yy DD oo ww nn ee ss99 33 77 88 88 11 11 LL MM 00 22 11
StudentID StudentName Course.

StudentRecord

F r a n k C u r t a i n9 3 3 4 5 6 7 L M 0 5 1
T h o m a s H e a l y9 3 8 3 7 1 5 L M 0 6 8
T o n y O ‘ B r i a n9 3 4 7 2 9 2 L M 0 5 1
BB ii ll ll yy DD oo ww nn ee ss99 33 77 88 88 11 11 LL MM 00 22 11

EOF
PERFORM UNTIL StudentRecord = HIGH-VALUES

READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord

END-READ
END-PERFORM.

Introduction to Sequential Files
How the READ works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation87

J J J J J J J J J J J J J J JJ J J J J J J J J J J J

StudentID StudentName Course.

StudentRecord

F r a n k C u r t a i n9 3 3 4 5 6 7 L M 0 5 1
T h o m a s H e a l y9 3 8 3 7 1 5 L M 0 6 8
T o n y O ‘ B r i a n9 3 4 7 2 9 2 L M 0 5 1
B i l l y D o w n e s9 3 7 8 8 1 1 L M 0 2 1

EOF

HIGH-VALUES

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords

AT END MOVE HIGH-VALUES TO StudentRecord
END-READ

END-PERFORM.

Introduction to Sequential Files
How the READ works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation88

§ To WRITE data to a file move the data to the record
buffer (declared in the FD entry) and then WRITE
the contents of record buffer to the file.

[]

PAGE
meMnemonicNa

AdvanceNum

ADVANCING

WRITE

LINES
LINE

AFTER
BEFORE

Identifier FROM RecordName

Introduction to Sequential Files
WRITE Syntax

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation89

FF rr aa nn kk CC uu rr tt aa ii nn99 33 33 44 55 66 77 LL MM 00 55 11
StudentID StudentName Course.

StudentRecord

FF rr aa nn kk CC uu rr tt aa ii nn99 33 33 44 55 66 77 LL MM 00 55 11

EOF

OPEN OUTPUT StudentFile.
MOVE "9334567Frank Curtain LM051" TO StudentDetails.
WRITE StudentDetails.
MOVE "9383715Thomas Healy LM068" TO StudentDetails.
WRITE StudentDetails.
CLOSE StudentFile.
STOP RUN.

OPEN OUTPUT StudentFile.
MOVE "9334567Frank Curtain LM051" TO StudentDetails.
WRITE StudentDetails.
MOVE "9383715Thomas Healy LM068" TO StudentDetails.
WRITE StudentDetails.
CLOSE StudentFile.
STOP RUN.

Students.Dat

Introduction to Sequential Files
How the WRITE works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation90

TT hh oo mm aa ss HH ee aa ll yy99 33 88 33 77 11 55 LL MM 00 66 88
StudentID StudentName Course.

StudentRecord

F r a n k C u r t a i n9 3 3 4 5 6 7 L M 0 5 1
TT hh oo mm aa ss HH ee aa ll yy99 33 88 33 77 11 55 LL MM 00 66 88

EOF

OPEN OUTPUT StudentFile.
MOVE "9334567Frank Curtain LM051" TO StudentDetails.
WRITE StudentDetails.
MOVE "9383715Thomas Healy LM068" TO StudentDetails.
WRITE StudentDetails.
CLOSE StudentFile.
STOP RUN.

OPEN OUTPUT StudentFile.
MOVE "9334567Frank Curtain LM051" TO StudentDetails.
WRITE StudentDetails.
MOVE "9383715Thomas Healy LM068" TO StudentDetails.
WRITE StudentDetails.
CLOSE StudentFile.
STOP RUN.

Students.Dat

Introduction to Sequential Files
How the WRITE works

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation91

IDENTIFICATION DIVISION.
PROGRAM-ID. SeqWrite.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Student ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD Student.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

PROCEDURE DIVISION.
Begin.

OPEN OUTPUT Student.
DISPLAY "Enter student details using template below. Enter no data to end.".
PERFORM GetStudentDetails.
PERFORM UNTIL StudentDetails = SPACES

WRITE StudentDetails
PERFORM GetStudentDetails

END-PERFORM.
CLOSE Student.
STOP RUN.

GetStudentDetails.
DISPLAY "NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS".
ACCEPT StudentDetails.

IDENTIFICATION DIVISION.
PROGRAM-ID. SeqWrite.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Student ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD Student.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

PROCEDURE DIVISION.
Begin.

OPEN OUTPUT Student.
DISPLAY "Enter student details using template below. Enter no data to end.".
PERFORM GetStudentDetails.
PERFORM UNTIL StudentDetails = SPACES

WRITE StudentDetails
PERFORM GetStudentDetails

END-PERFORM.
CLOSE Student.
STOP RUN.

GetStudentDetails.
DISPLAY "NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS".
ACCEPT StudentDetails.

Introduction to Sequential Files
Sample Code

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation92

IDENTIFICATION DIVISION.
PROGRAM-ID. SeqRead.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Student ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD Student.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

PROCEDURE DIVISION.
Begin.

OPEN INPUT Student
READ Student

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
PERFORM UNTIL StudentDetails = HIGH-VALUES
DISPLAY StudentId SPACE StudentName SPACE CourseCode
READ Student

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
END-PERFORM
CLOSE Student
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. SeqRead.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Student ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD Student.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

PROCEDURE DIVISION.
Begin.

OPEN INPUT Student
READ Student

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
PERFORM UNTIL StudentDetails = HIGH-VALUES
DISPLAY StudentId SPACE StudentName SPACE CourseCode
READ Student

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
END-PERFORM
CLOSE Student
STOP RUN.

Introduction to Sequential Files
Sample Code

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation93

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation94

§ File organization and access methods.

§ Ordered and unordered Sequential Files.

§ Processing unordered files.

§ Processing ordered files.

Processing Sequential Files
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation95

PROCEDURE DIVISION.
Begin.

OPEN OUTPUT StudentFile
DISPLAY "Enter student details using template below. Press CR to end.".
PERFORM GetStudentDetails
PERFORM UNTIL StudentDetails = SPACES

WRITE StudentDetails
PERFORM GetStudentDetails

END-PERFORM
CLOSE StudentFile
STOP RUN.

GetStudentDetails.
DISPLAY "NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS".
ACCEPT StudentDetails.

PROCEDURE DIVISION.
Begin.

OPEN OUTPUT StudentFile
DISPLAY "Enter student details using template below. Press CR to end.".
PERFORM GetStudentDetails
PERFORM UNTIL StudentDetails = SPACES

WRITE StudentDetails
PERFORM GetStudentDetails

END-PERFORM
CLOSE StudentFile
STOP RUN.

GetStudentDetails.
DISPLAY "NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS".
ACCEPT StudentDetails.

Enter student details using template below. Press CR to end.
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
9456789COUGHLANMS580812LM510598M
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
9367892RYAN TG521210LM601222F
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
9368934WILSON HR520323LM610786M
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
CarriageReturn

Enter student details using template below. Press CR to end.
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
9456789COUGHLANMS580812LM510598M
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
9367892RYAN TG521210LM601222F
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
9368934WILSON HR520323LM610786M
NNNNNNNSSSSSSSSIIYYMMDDCCCCGGGGS
CarriageReturn

$ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. SeqWrite.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT StudentFile ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

$ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. SeqWrite.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT StudentFile ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

Processing Sequential Files
Run of SeqWrite

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation96

PROCEDURE DIVISION.
Begin.

OPEN INPUT StudentFile
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
PERFORM UNTIL StudentDetails = HIGH-VALUES

DISPLAY StudentId SPACE StudentName SPACE CourseCode
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ

END-PERFORM
CLOSE StudentFile
STOP RUN.

PROCEDURE DIVISION.
Begin.

OPEN INPUT StudentFile
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
PERFORM UNTIL StudentDetails = HIGH-VALUES

DISPLAY StudentId SPACE StudentName SPACE CourseCode
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ

END-PERFORM
CLOSE StudentFile
STOP RUN.

$ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. SeqRead.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT StudentFile ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

$ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. SeqRead.
AUTHOR. Michael Coughlan.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT StudentFile ASSIGN TO STUDENTS
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 Surname PIC X(8).
03 Initials PIC XX.

02 DateOfBirth.
03 YOBirth PIC 9(2).
03 MOBirth PIC 9(2).
03 DOBirth PIC 9(2).

02 CourseCode PIC X(4).
02 Grant PIC 9(4).
02 Gender PIC X.

9456789 COUGHLANMS LM51
9367892 RYAN TG LM60
9368934 WILSON HR LM61

9456789 COUGHLANMS LM51
9367892 RYAN TG LM60
9368934 WILSON HR LM61

Processing Sequential Files
RUN OF SeqRead

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation97

§ Two important characteristics of files are
–– DATA ORGANIZATIONDATA ORGANIZATION
–– METHOD OF ACCESSMETHOD OF ACCESS

§ Data organization refers to the way the records of the file are organized on
the backing storage device.
COBOL recognizes three main file organizations;

Sequential - Records organized serially.

Relative - Relative record number based organization.

Indexed - Index based organization.

§ The method of access refers to the way in which records are accessed.
– A file with an organization of Indexed or Relative may

still have its records accessed sequentially.

– But records in a file with an organization of Sequential can not be accessed
directly.

Processing Sequential Files
Organization and Access

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation98

§ The simplest COBOL file organization is Sequential.

§ In a Sequential file the records are arranged serially, one after
another, like cards in a dealing shoe.

§ In a Sequential file the only way to access any particular record is
to;

Start at the first record and read all the succeeding records until you
find the one you want or reach the end of the file.

§ Sequential files may be
OrderedOrdered

or
UnorderedUnordered (these should be called Serial files)

§ The ordering of the records in a file has a significant impact on the
way in which it is processed and the processing that can be done
on it.

Processing Sequential Files
Sequential Organization

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation99

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG

Unordered File

In an ordered file the records are sequenced on some field in the record.

Processing Sequential Files
Ordered and Unordered Files

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation100

RecordF
RecordP
RecordW

RecordF
RecordP
RecordW

Transaction
File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG

Unordered
FilePROGRAM

PROGRAMFILE SECTION.

PROCEDURE DIVISION.
OPEN EXTEND UF.
OPEN INPUT TF.
READ TF.
MOVE TFRec TO UFRec.
WRITE UFRec.

FILE SECTION.

PROCEDURE DIVISION.
OPEN EXTEND UF.
OPEN INPUT TF.
READ TF.
MOVE TFRec TO UFRec.
WRITE UFRec.

TFRecTFRec
UFRecUFRec

Processing Sequential Files
Adding records to unordered files

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation101

RecordF
RecordP
RecordW

RecordFRecordF
RecordP
RecordW

Transaction
File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG
RecordF

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG
RecordFRecordF

Unordered
FilePROGRAM

PROGRAMFILE SECTION.

PROCEDURE DIVISION.
OPEN EXTEND UF.
OPEN INPUT TF.
READ TF.
MOVE TFRec TO UFRec.
WRITE UFRec.

FILE SECTION.

PROCEDURE DIVISION.
OPEN EXTEND UF.
OPEN INPUT TF.
READ TF.
MOVE TFRec TO UFRec.
WRITE UFRec.

RecordFRecordF
RecordFRecordF

Processing Sequential Files
Adding records to unordered files

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation102

RecordF
RecordP
RecordW

RecordFRecordF
RecordPRecordP
RecordWRecordW

Transaction
File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG
RecordF
RecordP
RecordW

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK
RecordG
RecordFRecordF
RecordPRecordP
RecordWRecordW

Unordered
File

RESULTRESULT

Processing Sequential Files
Adding records to unordered files

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation103

§ It is easy to add records to an unordered Sequential file.

§ But it is not really possible to delete records from an unordered
Sequential file.

§ And it is not feasible to update records in an unordered Sequential file

Processing Sequential Files
Problems with Unordered Sequential Files

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation104

§ Records in a Sequential file can not be deleted or updated “in situ”.

§ The only way to delete Sequential file records is to create a new file
which does not contain them.

§ The only way to update records in a Sequential File is to create a new
file which contains the updated records.

§ Because both these operations rely on record matching they do not
work for unordered Sequential files.

§ Why?

Processing Sequential Files
Problems with Unordered Sequential Files

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation105

RecordB
RecordM
RecordK

RecordBRecordB
RecordM
RecordK

Transaction File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK

RecordMRecordM
RecordH
RecordB
RecordN
RecordA
RecordK

Unordered File

New File

Delete UFDelete UF
Record?Record?

RecordMRecordMRecordM

NONO

Processing Sequential Files
Deleting records from unordered files?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation106

RecordB
RecordM
RecordK

RecordBRecordB
RecordM
RecordK

Transaction File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK

RecordM
RecordHRecordH
RecordB
RecordN
RecordA
RecordK

Unordered File

New File

Delete UFDelete UF
Record?Record?

RecordM
RecordH

RecordM
RecordHRecordHNONO

Processing Sequential Files
Deleting records from unordered files?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation107

RecordB
RecordM
RecordK

RecordBRecordB
RecordM
RecordK

Transaction File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK

RecordM
RecordH
RecordBRecordB
RecordN
RecordA
RecordK

Unordered File

New File

Delete UFDelete UF
Record?Record?

RecordM
RecordH

RecordM
RecordHYESYES

Processing Sequential Files
Deleting records from unordered files?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation108

RecordB
RecordM
RecordK

RecordB
RecordMRecordM
RecordK

Transaction File

RecordM
RecordH
RecordB
RecordN
RecordA
RecordK

RecordM
RecordH
RecordB
RecordNRecordN
RecordA
RecordK

Unordered File

New File

Delete UFDelete UF
Record?Record?

RecordM
RecordH
RecordN

RecordM
RecordH
RecordNRecordN

NONO

But wait...
We should have deleted RecordM.
Too late. It’s already been written to
the new file.

Processing Sequential Files
Deleting records from unordered files?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation109

RecordB
RecordK
RecordM

RecordB
RecordK
RecordM

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM
FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey NOT = OFKey
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey NOT = OFKey
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

TFRecTFRec
OFRecOFRec
NFRecNFRec

Processing Sequential Files
Deleting records from an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation110

RecordB
RecordK
RecordM

RecordBRecordB
RecordK
RecordM

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordARecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordARecordARecordAFILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFRec NOT = OFRec
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFRec NOT = OFRec
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

RecordBRecordB
RecordARecordA
RecordARecordA

Problem !!
How can we recognize
which record we want

to delete?
By its Key Field

Processing Sequential Files
Deleting records from an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation111

RecordB
RecordK
RecordM

RecordB
RecordK
RecordM

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordBRecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM
FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey NOT = OFKey
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey NOT = OFKey
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

RecordBRecordB
RecordBRecordB
RecordARecordA

RecordARecordA

Processing Sequential Files
Deleting records from an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation112

RecordB
RecordK
RecordM

RecordB
RecordKRecordK
RecordM

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordGRecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordG

RecordA
RecordGRecordG

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey NOT = OFKey
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey NOT = OFKey
MOVE OFRec TO NFRec
WRITE NFRec
READ OF
ELSE
READ TF
READ OF

END-IF.

RecordKRecordK
RecordGRecordG
RecordGRecordG

Processing Sequential Files
Deleting records from an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation113

RecordB
RecordK
RecordM

RecordBRecordB
RecordKRecordK
RecordMRecordM

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordARecordA
RecordBRecordB
RecordGRecordG
RecordHRecordH
RecordKRecordK
RecordMRecordM
RecordNRecordN

Ordered File

New File

RESULTRESULT

RecordA
RecordG
RecordH
RecordN

RecordARecordA
RecordGRecordG
RecordHRecordH
RecordNRecordN

Processing Sequential Files
Deleting records from an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation114

RecordB
RecordH
RecordK

RecordB
RecordH
RecordK

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM
FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

TFRecTFRec
OFRecOFRec
NFRecNFRec

Processing Sequential Files
Updating records in an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation115

RecordB
RecordH
RecordK

RecordBRecordB
RecordH
RecordK

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordARecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordARecordARecordAFILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordBRecordB
RecordARecordA
RecordARecordA

Processing Sequential Files
Updating records in an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation116

RecordB
RecordH
RecordK

RecordB
RecordH
RecordK

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordBRecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordB+

RecordA
RecordBRecordB++

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordBRecordB
RecordBRecordB
RecordBRecordB++

Processing Sequential Files
Updating records in an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation117

RecordB
RecordH
RecordK

RecordB
RecordHRecordH
RecordK

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordGRecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordB+
RecordG

RecordA
RecordB+
RecordGRecordG

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
WRITE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordHRecordH
RecordGRecordG
RecordGRecordG

Processing Sequential Files
Updating records in an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation118

RecordC
RecordF
RecordP

RecordC
RecordF
RecordP

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM
FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

TFRecTFRec
OFRecOFRec
NFRecNFRec

Processing Sequential Files
Inserting records into an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation119

RecordC
RecordF
RecordP

RecordCRecordC
RecordF
RecordP

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordARecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordARecordARecordAFILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordCRecordC
RecordARecordA
RecordARecordA

Processing Sequential Files
Inserting records into an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation120

RecordC
RecordF
RecordP

RecordC
RecordF
RecordP

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordBRecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordB

RecordA
RecordBRecordB

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordCRecordC
RecordBRecordB
RecordBRecordB

Processing Sequential Files
Inserting records into an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation121

RecordC
RecordF
RecordP

RecordC
RecordF
RecordP

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordGRecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordB
RecordC

RecordA
RecordB
RecordCRecordC

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordCRecordC
RecordGRecordG
RecordCRecordC

Processing Sequential Files
Inserting records into an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation122

RecordC
RecordF
RecordP

RecordC
RecordFRecordF
RecordP

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordB
RecordC
RecordF

RecordA
RecordB
RecordC
RecordFRecordF

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordFRecordF
RecordGRecordG
RecordFRecordF

Processing Sequential Files
Inserting records into an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation123

RecordC
RecordF
RecordP

RecordC
RecordF
RecordPRecordP

Transaction File

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

RecordA
RecordB
RecordG
RecordH
RecordK
RecordM
RecordN

Ordered File

New FilePROGRAM

RecordA
RecordB
RecordC
RecordF
RecordG

RecordA
RecordB
RecordC
RecordF
RecordGRecordG

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

FILE SECTION.

PROCEDURE DIVISION.
OPEN INPUT TF.
OPEN INPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
IF TFKey < OFKey
MOVE TFRec TO NFRec
WRITE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRITE NFRec
READ OF

END-IF.

RecordPRecordP
RecordGRecordG
RecordGRecordG

Processing Sequential Files
Inserting records into an ordered file

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation124

EXERCISE 2

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation125

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation126

§ Non-Iteration PERFORM.

§ GO TO and PERFORM....THRU.

§ In line and out of line PERFORM.

§ PERFORM n TIMES.

§ PERFORM UNTIL.

§ Using the PERFORM...UNTIL in processing files.

Simple iteration with the PERFORM verb
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation127

§ Iteration is an important programming construct. We use iteration when
we need to repeat the same instructions over and over again.

§ Most programming languages have several iteration keywords (e.g.
WHILE, FOR, REPEAT) which facilitate the creation different ‘types’ of
iteration structure.

§ COBOL only has one iteration construct; PERFORM.

§ But the PERFORM has several variations.

§ Each variation is equivalent to one of the iteration ‘types’ available in
other languages.

§ This lecture concentrates on three of the PERFORM formats. The
PERFORM..VARYING, the COBOL equivalent of the FOR , will be
introduced later.

Simple iteration with the PERFORM verb
The PERFORM Verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation128

§ A Paragraph is a block of code to which we have given a name.

§ A Paragraph Name is a programmer defined name formed using the
standard rules for programmer defined names (A-Z, 0-9, -).

§ A Paragraph Name is ALWAYS terminated with a ‘full-stop’.

§ Any number of statements and sentences may be included in a
paragraph, and the last one (at least) must be terminated with a ‘full-
stop’.

§ The scope of a paragraph is delimited by the occurrence of another
paragraph name or the end of the program text.

Simple iteration with the PERFORM verb
Paragraphs :- Revisited

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation129

ProcessRecord.
DISPLAY StudentRecord
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentRecord
END-READ.

ProduceOutput.
DISPLAY “Here is a message”.

NOTE
The scope of ‘ProcessRecord’ is delimited
by the occurrence the paragraph name
‘ProduceOutput’.

NOTENOTE
The scope of ‘ProcessRecord’ is delimited
by the occurrence the paragraph name
‘ProduceOutput’.

Simple iteration with the PERFORM verb
Paragraph Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation130

§ This is the only type of PERFORM that is not an iteration construct.
§ It instructs the computer to transfer control to an out-of-line block of

code.
§ When the end of the block is reached, control reverts to the

statement (not the sentence) immediately following the
PERFORM.

§ 1stProc and EndProc are the names of Paragraphs or Sections.
§ The PERFORM..THRU instructs the computer to treat the

Paragraphs or Sections from 1stProc TO EndProc as a single
block of code.

EndProc
THROUGH
THRU

 1stProc PERFORM

Simple iteration with the PERFORM verb
Format 1 Syntax

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation131

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevelTopLevel..

DISPLAY "In DISPLAY "In TopLevelTopLevel. Starting to run program". Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation132

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevelTopLevel..

DISPLAY "In TopLevel. Starting to run program"
PERFORM PERFORM OneLevelDownOneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation133

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDownOneLevelDown..
DISPLAY ">>>> Now in DISPLAY ">>>> Now in OneLevelDownOneLevelDown""
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation134

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDownOneLevelDown..
DISPLAY ">>>> Now in OneLevelDown"
PERFORM PERFORM TwoLevelsDownTwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation135

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDownTwoLevelsDown..
DISPLAY ">>>>>>>> Now in DISPLAY ">>>>>>>> Now in TwoLevelsDownTwoLevelsDown."."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation136

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDownOneLevelDown..
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in DISPLAY ">>>> Back in OneLevelDownOneLevelDown".".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation137

PROCEDURE DIVISION.
TopLevel.

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

PROCEDURE DIVISION.
TopLevelTopLevel..

DISPLAY "In TopLevel. Starting to run program"
PERFORM OneLevelDown
DISPLAY "Back in DISPLAY "Back in TopLevelTopLevel."..".
STOP RUN.

TwoLevelsDown.
DISPLAY ">>>>>>>> Now in TwoLevelsDown."

OneLevelDown.
DISPLAY ">>>> Now in OneLevelDown"
PERFORM TwoLevelsDown
DISPLAY ">>>> Back in OneLevelDown".

Run of PerformFormat1

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

In TopLevel. Starting to run program
>>>> Now in OneLevelDown
>>>>>>>> Now in TwoLevelsDown.
>>>> Back in OneLevelDown
Back in TopLevel.

Simple iteration with the PERFORM verb
Format 1 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation138

PROCEDURE DIVISION.
Begin.

PERFORM SumSales
STOP RUN.

SumSales.
Statements
Statements
IF NoErrorFound

Statements
Statements
IF NoErrorFound
Statements
Statements
Statements
END-IF

END-IF.

PROCEDURE DIVISION.
Begin.

PERFORM SumSales
STOP RUN.

SumSales.
Statements
Statements
IF NoErrorFound

Statements
Statements
IF NoErrorFound
Statements
Statements
Statements
END-IF

END-IF.

Simple iteration with the PERFORM verb
Why use the PERFORM Thru?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation139

PROCEDURE DIVISION
Begin.

PERFORM SumSales THRU SumSalesExit
STOP RUN.

SumSales.
Statements
Statements
IF ErrorFound GO TO SumSalesExit
END-IF
Statements
Statements
Statements
IF ErrorFound GO TO SumSalesExit
END-IF
Statements

SumSalesExit.
EXIT.

PROCEDURE DIVISION
Begin.

PERFORM SumSales THRU SumSalesExit
STOP RUN.

SumSales.
Statements
Statements
IF ErrorFound GO TO SumSalesExit
END-IF
Statements
Statements
Statements
IF ErrorFound GO TO SumSalesExit
END-IF
Statements

SumSalesExit.
EXIT.

Simple iteration with the PERFORM verb
Go To and PERFORM THRU

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation140

PROCEDURE DIVISION.
Begin.

DisplayName.

PROCEDURE DIVISION.
Begin.

DisplayName.

Statements
PERFORM DisplayName 4 TIMES
Statements
STOP RUN.

DISPLAY “Tom Ryan”.

[] PERFORM-ENDlock StatementB
TIMESt RepeatCoun

EndProc
THROUGH
THRU

 1stProc PERFORM

Simple iteration with the PERFORM verb
Format 2 - Syntax

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation141

IDENTIFICATION DIVISION.
PROGRAM-ID. PerformExample2.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumofTimes PIC 9 VALUE 5.

PROCEDURE DIVISION.
Begin.

DISPLAY "Starting to run program"
PERFORM 3 TIMES

DISPLAY ">>>>This is an in line Perform"
END-PERFORM
DISPLAY "Finished in line Perform"
PERFORM OutOfLineEG NumOfTimes TIMES
DISPLAY "Back in Begin. About to Stop".
STOP RUN.

OutOfLineEG.
DISPLAY ">>>> This is an out of line Perform".

IDENTIFICATION DIVISION.
PROGRAM-ID. PerformExample2.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumofTimes PIC 9 VALUE 5.

PROCEDURE DIVISION.
Begin.

DISPLAY "Starting to run program"
PERFORM 3 TIMES

DISPLAY ">>>>This is an in line Perform"
END-PERFORM
DISPLAY "Finished in line Perform"
PERFORM OutOfLineEG NumOfTimes TIMES
DISPLAY "Back in Begin. About to Stop".
STOP RUN.

OutOfLineEG.
DISPLAY ">>>> This is an out of line Perform".

Starting to run program
>>>>This is an in line Perform
>>>>This is an in line Perform
>>>>This is an in line Perform
Finished in line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
Back in Begin. About to Stop

Starting to run program
>>>>This is an in line Perform
>>>>This is an in line Perform
>>>>This is an in line Perform
Finished in line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
>>>> This is an out of line Perform
Back in Begin. About to Stop

Run of PerformExample2
Simple iteration with the PERFORM verb
Format 2 Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation142

§ This format is used where the WHILE or REPEAT constructs
are used in other languages.

§ If the WITH TEST BEFORE phrase is used the PERFORM
behaves like a WHILE loop and the condition is tested before
the loop body is entered.

§ If the WITH TEST AFTER phrase is used the PERFORM
behaves like a REPEAT loop and the condition is tested after
the loop body is entered.

§ The WITH TEST BEFORE phrase is the default and so is
rarely explicitly stated.

[]

PERFORM-ENDlock StatementB
Condition UNTIL

AFTER
BEFORE

 TEST WITH EndProc
THROUGH
THRU

 1stProc PERFORM

Simple iteration with the PERFORM verb
Format 3 - Syntax

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation143

test

Loop Body

False

True

PERFORM WITH
TEST AFTER =
REPEAT ... UNTIL

PERFORM WITH
TEST AFTER =
REPEAT ... UNTIL

Next Statement

test

Loop Body

False

True

PERFORM WITH
TEST BEFORE =
WHILE ... DO

PERFORM WITH
TEST BEFORE =
WHILE ... DO

Next Statement

Simple iteration with the PERFORM verb
Format 3 - Sample

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation144

§ In general terms, the WHILE loop is an ideal construct for
processing sequences of data items whose length is not
predefined.

§ Such sequences of values are often called “streams”.

§ Because the ‘length’ of the stream is unknown we have to be
careful how we manage the detection of the end of the stream.

§ A useful way for solving this problem uses a strategy known as
“read ahead”.

Simple iteration with the PERFORM verb
Sequential File Processing

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation145

§ With the “read ahead” strategy we always try to stay one data item
ahead of the processing.

§ The general format of the “read ahead” algorithm is as follows;
Attempt to READ first data item
WHILE NOT EndOfStream

Process data item
Attempt to READ next data item

ENDWHILE

§ Use this to process any stream of data.

Simple iteration with the PERFORM verb
The READ Ahead

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation146

§ Algorithm Template
READ READ StudentRecordsStudentRecords

AT END MOVE HIGHAT END MOVE HIGH--VALUES TO VALUES TO StudentRecordStudentRecord
ENDEND--READREAD
PERFORM UNTIL PERFORM UNTIL StudentRecordStudentRecord = HIGH= HIGH--VALUESVALUES

DISPLAY DISPLAY StudentRecordStudentRecord
READ READ StudentRecordsStudentRecords

AT END MOVE HIGHAT END MOVE HIGH--VALUES TO VALUES TO StudentRecordStudentRecord
ENDEND--READREAD

ENDEND--PERFORMPERFORM

§ This is an example of an algorithm which is capable of processing any
sequential file; ordered or unordered!

Simple iteration with the PERFORM verb
Reading a Sequential File

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation147

PROCEDURE DIVISION.
Begin.

OPEN INPUT StudentFile
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
PERFORM UNTIL StudentDetails = HIGH-VALUES

DISPLAY StudentId SPACE StudentName SPACE CourseCode
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ

END-PERFORM
CLOSE StudentFile
STOP RUN.

PROCEDURE DIVISION.
Begin.

OPEN INPUT StudentFile
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ
PERFORM UNTIL StudentDetails = HIGH-VALUES

DISPLAY StudentId SPACE StudentName SPACE CourseCode
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentDetails
END-READ

END-PERFORM
CLOSE StudentFile
STOP RUN.

9456789 COUGHLANMS LM51
9367892 RYAN TG LM60
9368934 WILSON HR LM61

9456789 COUGHLANMS LM51
9367892 RYAN TG LM60
9368934 WILSON HR LM61

RUN OF SeqRead

Simple iteration with the PERFORM verb
Sample

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation148

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation149

§ ROUNDED option.

§ ON SIZE ERROR option.

§ ADD, SUBTRACT, MULTIPLY, DIVIDE and COMPUTE.

§ Edited PICTURE clauses.

§ Simple Insertion.

§ Special Insertion.

§ Fixed Insertion.

§ Floating Insertion.

§ Suppression and Replacement.

Arithmetic and Edited Pictures
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation150

§ Most COBOL arithmetic verbs conform to the template above. For
example;

ADD Takings TO CashTotal.
ADD Males TO Females GIVING TotalStudents.
SUBTRACT Tax FROM GrossPay.
SUBTRACT Tax FROM GrossPay GIVING NetPay.
DIVIDE Total BY Members GIVING MemberAverage.
DIVIDE Members INTO Total GIVING MemberAverage.
MULTIPLY 10 BY Magnitude.
MULTIPLY Members BY Subs GIVING TotalSubs.

§ The exceptions are the COMPUTE and the DIVIDE with REMAINDER.

Arithmetic and Edited Pictures
Arithmetic Verb Template

[]

[] VERB-ENDlock StatementB ERROR SIZE ON

ROUNDED
 IdentifierGIVING Identifier

 Identifier

INTO
BY
FROM
TO

Literal
Identifier

 VERB

K

K

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation151

Receiving Field Actual Result Truncated Result Rounded Result

PIC 9(3)V9. 123.25

PIC 9(3). 123.25

123.2 123.3

123 123

u The ROUNDED option takes effect when, after decimal point
alignment, the result calculated must be truncated on the right
hand side.

u The option adds 1 to the receiving item when the leftmost
truncated digit has an absolute value of 5 or greater.

Arithmetic and Edited Pictures
The ROUNDED option

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation152

u A size error condition exists when, after decimal point alignment, the
result is truncated on either the left or the right hand side.

u If an arithmetic statement has a rounded phrase then a size error only
occurs if there is truncation on the left hand side (most significant
digits).

Receiving Field Actual Result SIZE ERROR
PIC 9(3)V9. 245.96
PIC 9(3)V9. 1245.9
PIC 9(3). 124
PIC 9(3). 1246
PIC 9(3)V9 Not Rounded 124.45
PIC 9(3)V9 Rounded 124.45
PIC 9(3)V9 Rounded 3124.45

Yes
Yes
No
Yes
Yes
No
Yes

Arithmetic and Edited Pictures
The ON SIZE ERROR option

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation153

ADD Cash TO Total.
Before 3 1000
After

ADD Cash, 20 TO Total, Wage.
Before 3 1000 100
After

ADD Cash, Total GIVING Result.
Before 3 1000 0015
After

ADD Males TO Females GIVING TotalStudents.
Before 1500 0625 1234
After

ADD Cash TO Total.
BeforeBefore 3 1000
AfterAfter

ADD Cash, 20 TO Total, Wage.
Before Before 3 1000 100
AfterAfter

ADD Cash, Total GIVING Result.
BeforeBefore 3 1000 0015
AfterAfter

ADD Males TO Females GIVING TotalStudents.
Before Before 1500 0625 1234
AfterAfter 1500 0625 2125

3 1003

3 1023 123

3 1000 1003

Arithmetic and Edited Pictures
ADD Examples

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation154

SUBTRACT Tax FROM GrossPay, Total.
Before 120 4000 9120
After

SUBTRACT Tax, 80 FROM Total.
Before 100 480
After

SUBTRACT Tax FROM GrossPay GIVING NetPay.
Before 750 1000 0012
After

SUBTRACT Tax FROM GrossPay, Total.
Before Before 120 4000 9120
AfterAfter

SUBTRACT Tax, 80 FROM Total.
Before Before 100 480
AfterAfter

SUBTRACT Tax FROM GrossPay GIVING NetPay.
BeforeBefore 750 1000 0012
AfterAfter

120 3880 9000

100 300

750 1000 0250

Arithmetic and Edited Pictures
SUBTRACT Examples

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation155

MULTIPLY Subs BY Members GIVING TotalSubs
ON SIZE ERROR DISPLAY "TotalSubs too small"

END-MULTIPLY.
Subs Members TotalSubs

Before 15.50 100 0123.45
After

MULTIPLY 10 BY Magnitude, Size.
Before 355 125
After

DIVIDE Total BY Members GIVING Average ROUNDED.
Before 9234.55 100 1234.56
After

MULTIPLY Subs BY Members GIVING TotalSubs
ON SIZE ERROR DISPLAY "TotalSubs too small"

END-MULTIPLY.
Subs Subs Members Members TotalSubsTotalSubs

BeforeBefore 15.50 100 0123.45
AfterAfter

MULTIPLY 10 BY Magnitude, Size.
BeforeBefore 355 125
AfterAfter

DIVIDE Total BY Members GIVING Average ROUNDED.
BeforeBefore 9234.55 100 1234.56
AfterAfter 9234.55 100 92.35

3550 1250

Arithmetic and Edited Pictures
MULTIPLY and DIVIDE Examples

15.50 100 1550.00

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation156

DIVIDE 201 BY 10 GIVING Quotient REMAINDER Remain.
Before 209 424
After

DIVIDE 201 BY 10 GIVING Quotient REMAINDER Remain.
Before Before 209 424
AfterAfter

{ }

{ }

DIVIDE-ENDlock StatementB
ERROR SIZE ON NOT

ERROR SIZE ON

Identifier REMAINDER] ROUNDED [Identifier GIVING BY DIVIDE

DIVIDE-ENDlock StatementB
ERROR SIZE ON NOT

ERROR SIZE ON

Identifier REMAINDER] ROUNDED [Identifier GIVING INTO DIVIDE

Literal
Identifier

Literal
Identifier

Literal
Identifier

Literal
Identifier

Arithmetic and Edited Pictures
The Divide Exception

020 001

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation157

Compute IrishPrice = SterlingPrice / Rate * 100.
Before 1000.50 156.25 87
After

Compute IrishPrice = SterlingPrice / Rate * 100.
Before Before 1000.50 156.25 87
AfterAfter 179.59 156.25 87

Precedence Rules.
1. ** = POWER NN

2. * = MULTIPLY x
/ = DIVIDE ÷

3. + = ADD +
- = SUBTRACT -

Precedence Rules.Precedence Rules.
1.1. **** = POWER NN

2.2. ** = MULTIPLY x
// = DIVIDE ÷

3.3. ++ = ADD +
-- = SUBTRACT -

{ }

COMPUTE-ENDlock StatementB
ERROR SIZE ON NOT

ERROR SIZE ON

ExpressionArithmetic = ...] ROUNDED [Identifier COMPUTE

Arithmetic and Edited Pictures
The COMPUTE

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation158

§ Edited Pictures are PICTURE clauses which format data intended for output to
screen or printer.

§ To enable the data items to be formatted in a particular style COBOL provides
additional picture symbols supplementing the basic 9, X, A, V and S symbols.

§ The additional symbols are referred to as “Edit Symbols” and PICTURE
clauses which include edit symbols are called “Edited Pictures”.

§ The term edit is used because the edit symbols have the effect of changing, or
editing, the data inserted into the edited item.

§ Edited items can not be used as operands in a computation but they may be
used as the result or destination of a computation (i.e. to the right of the word
GIVING).

Arithmetic and Edited Pictures
Edited Pictures

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation159

§ COBOL provides two basic types of editing
å Insertion Editing - which modifies a value by

including additional items.
ç Suppression and Replacement Editing -

which suppresses and replaces leading zeros.

§ Each type has sub-categories
l Insertion editing

® Simple Insertion
® Special Insertion
® Fixed Insertion
® Floating Insertion

l Suppression and Replacement
® Zero suppression and replacement with spaces
® Zero suppression and replacement with asterisks

Arithmetic and Edited Pictures
Editing Types

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation160

, B 0 / Simple Insertion
. Special Insertion

+ - CR DB $ Fixed Insertion
+ - S Floating Insertion
Z * Suppression and Replacement

, B 0 / Simple Insertion
. Special Insertion

+ - CR DB $ Fixed Insertion
+ - S Floating Insertion
Z * Suppression and Replacement

Edit Symbol Editing TypeEdit Symbol Editing Type

Arithmetic and Edited Pictures
Editing Symbols

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation161

Sending Receiving
Picture Data Picture Result

PIC 999999 123456 PIC 999,999
PIC 9(6) 000078 PIC 9(3),9(3)
PIC 9(6) 000078 PIC ZZZ,ZZZ
PIC 9(6) 000178 PIC ***,***
PIC 9(6) 002178 PIC ***,***

PIC 9(6) 120183 PIC 99B99B99
PIC 9(6) 120183 PIC 99/99/99
PIC 9(6) 001245 PIC 990099

Sending Sending ReceivingReceiving
Picture Data Picture ResultPicture Data Picture Result

PIC 999999 123456 PIC 999,999
PIC 9(6) 000078 PIC 9(3),9(3)
PIC 9(6) 000078 PIC ZZZ,ZZZ
PIC 9(6) 000178 PIC ***,***
PIC 9(6) 002178 PIC ***,***

PIC 9(6) 120183 PIC 99B99B99
PIC 9(6) 120183 PIC 99/99/99
PIC 9(6) 001245 PIC 990099

123,456
000,078
 78
****178
**2,178

12 01 83
12/01/83
120045

Arithmetic and Edited Pictures
Simple Insertion

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation162

Sending Receiving
Picture Data Picture Result

PIC 999V99 12345 PIC 999.99

PIC 999V99 02345 PIC 999.9

PIC 999V99 51234 PIC 99.99

PIC 999 456 PIC 999.99

Sending Sending ReceivingReceiving
Picture Data Picture ResultPicture Data Picture Result

PIC 999V99 12345 PIC 999.99

PIC 999V99 02345 PIC 999.9

PIC 999V99 51234 PIC 99.99

PIC 999 456 PIC 999.99

123.45
023.4
12.34

456.00

Arithmetic and Edited Pictures
Special Insertion

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation163

Sending Receiving
Picture Data Picture Result

PIC S999 -123 PIC -999
PIC S999 -123 PIC 999-
PIC S999 +123 PIC -999

PIC S9(5) +12345 PIC +9(5)
PIC S9(3) -123 PIC +9(3)
PIC S9(3) -123 PIC 999+

Sending Sending ReceivingReceiving
Picture Data Picture ResultPicture Data Picture Result

PIC S999 -123 PIC -999
PIC S999 -123 PIC 999-
PIC S999 +123 PIC -999

PIC S9(5) +12345 PIC +9(5)
PIC S9(3) -123 PIC +9(3)
PIC S9(3) -123 PIC 999+

-123
123-
 123

+12345
-123
123-

Arithmetic and Edited Pictures
Fixed Insertion - Plus and Minus

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation164

Sending Receiving
Picture Data Picture Result

PIC S9(4) +1234 PIC 9(4)CR
PIC S9(4) -1234 PIC 9(4)CR
PIC S9(4) +1234 PIC 9(4)DB
PIC S9(4) -1234 PIC 9(4)DB

PIC 9(4) 1234 PIC $99999
PIC 9(4) 0000 PIC $ZZZZZ

Sending Sending ReceivingReceiving
Picture Data Picture ResultPicture Data Picture Result

PIC S9(4) +1234 PIC 9(4)CR
PIC S9(4) -1234 PIC 9(4)CR
PIC S9(4) +1234 PIC 9(4)DB
PIC S9(4) -1234 PIC 9(4)DB

PIC 9(4) 1234 PIC $99999
PIC 9(4) 0000 PIC $ZZZZZ

1234
1234CR
1223
1234DB

$01234
$

Arithmetic and Edited Pictures
Fixed Insertion - Credit, Debit, $

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation165

Sending Receiving
Picture Data Picture Result

PIC 9(4) 0000 PIC $$,$$9.99
PIC 9(4) 0080 PIC $$,$$9.00
PIC 9(4) 0128 PIC $$,$$9.99
PIC 9(5) 57397 PIC $$,$$9

PIC S9(4) - 0005 PIC ++++9
PIC S9(4) +0080 PIC ++++9
PIC S9(4) - 0080 PIC - - - - 9
PIC S9(5) +71234 PIC - - - - 9

Sending Sending ReceivingReceiving
Picture Data Picture ResuPicture Data Picture Resultlt

PIC 9(4) 0000 PIC $$,$$9.99
PIC 9(4) 0080 PIC $$,$$9.00
PIC 9(4) 0128 PIC $$,$$9.99
PIC 9(5) 57397 PIC $$,$$9

PIC S9(4) - 0005 PIC ++++9
PIC S9(4) +0080 PIC ++++9
PIC S9(4) - 0080 PIC - - - - 9
PIC S9(5) +71234 PIC - - - - 9

$0.00
$80.00
$128.00

$7,397

-5
+80
-80

ž1234

Arithmetic and Edited Pictures
Floating Insertion

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation166

Sending Receiving
Picture Data Picture Result

PIC 9(5) 12345 PIC ZZ,999
PIC 9(5) 01234 PIC ZZ,999
PIC 9(5) 00123 PIC ZZ,999
PIC 9(5) 00012 PIC ZZ,999
PIC 9(5) 05678 PIC **,**9
PIC 9(5) 00567 PIC **,**9
PIC 9(5) 00000 PIC **,***

Sending Sending ReceivingReceiving
Picture Data Picture ResultPicture Data Picture Result

PIC 9(5) 12345 PIC ZZ,999
PIC 9(5) 01234 PIC ZZ,999
PIC 9(5) 00123 PIC ZZ,999
PIC 9(5) 00012 PIC ZZ,999
PIC 9(5) 05678 PIC **,**9
PIC 9(5) 00567 PIC **,**9
PIC 9(5) 00000 PIC **,***

12,345
 1,234
 123
 012
*5,678
***567

Arithmetic and Edited Pictures
Suppression and Replacement

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation167

EXERCISE 3

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation168

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation169

§ IF..THEN...ELSE.

§ Relation conditions.

§ Class conditions.

§ Sign conditions.

§ Complex conditions.

§ Implied Subjects.

§ Nested IFs and the END-IF.

§ Condition names and level 88's.

§ The SET verb.

Conditions
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation170

§ Simple Conditions
– Relation Conditions

– Class Conditions

– Sign Conditions
§ Complex Conditions
§ Condition Names

§ Simple Conditions
– Relation Conditions

– Class Conditions

– Sign Conditions
§ Complex Conditions
§ Condition Names

CCONDITION ONDITION TTYPESYPES

[]IF-END
SENTENCE NEXT

lockStatementB
 ELSE

SENTENCE NEXT
lockStatementB

 THENCondition

IF

Conditions
IF Syntax

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation171

[]
[]
[]
[]
[]
[]

ExpressionArithmetic
Literal
Identifier

ExpressionArithmetic
Literal
Identifier

<=

TO EQUAL OR THAN LESS
>=

TO EQUAL OR THAN GREATER
= NOT

TO EQUAL NOT
< NOT

THAN LESS NOT
> NOT

THAN GREATER NOT

 IS

Conditions
Relation Conditions

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation172

§ Although COBOL data items are not ‘typed’ they do fall
into some broad categories, or classes, such a numeric
or alphanumeric, etc.

§ A Class Condition determines whether the value of data
item is a member of one these classes.

dClassNameUserDefine
UPPER-ALPHABETIC
LOWER-ALPHABETIC

ALPHABETIC
NUMERIC

]NOT[IS Identifier

Conditions
Class Conditions

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation173

§ The sign condition determines whether or not the value of an
arithmetic expression is less than, greater than or equal to
zero.

§ Sign conditions are just another way of writing some of the
Relational conditions.

ZERO
NEGATIVE
POSITIVE

]NOT[IS ArithExp

Conditions
Sign Conditions

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation174

§ Programs often require conditions which are more complex
than single value testing or determining a data class.

§ Like all other programming languages COBOL allows simple
conditions to be combined using OR and AND to form
composite conditions.

§ Like other conditions, a complex condition evaluates to true
or false.

§ A complex condition is an expression which is evaluated from
left to right unless the order of evaluation is changed by the
precedence rules or bracketing.

Conditions
Complex conditions

K Condition
OR
AND

Condition

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation175

u Just like arithmetic expressions, complex conditions are evaluated using
precedence rules and the order of evaluation may be changed by bracketing.

u Examples
IF (Row > 0) AND (Row < 26) THEN

DISPLAY “On Screen”
END-IF
IF (VarA > VarC) OR (VarC = VarD) OR (VarA NOT = VarF)

DISPLAY “Done”
END-IF

Precedence Rules.
1. NOT = **
2. AND = * or /
3. OR = + or -

Precedence Rules.Precedence Rules.
1.1. NOTNOT = **
2.2. ANDAND = * or /
3.3. OROR = + or -

Conditions
Complex conditions have precedence rules too

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation176

§ When a data item is involved in a relation condition with each of a number of
other items it can be tedious to have to repeat the data item for each
condition. For example,

IF TotalAmt > 10000 AND TotalAmt < 50000 THEN
IF Grade = “A” OR Grade = “B+” OR GRADE = “B” THEN
IF VarA > VarB AND VarA > VarC AND VarA > VarD

DISPLAY “VarA is the Greatest”
END-IF

§ In these situations COBOL provides an abbreviation mechanism called
implied subjects.

§ The statements above may be re-written using implied subjects as;
IF TotalAmt > 10000 AND < 50000 THEN
IF Grade=“A” OR “B+” OR “B” THEN
IF VarA > VarB AND VarC AND VarD

DISPLAY “VarA is the Greatest”
END-IF

Implied Subjects
TotalAmt
Grade =
VarA >

Implied SubjectsImplied Subjects
TotalAmt
Grade =
VarA >

Conditions
Implied Subjects

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation177

IF (VarA < 10) AND (VarB NOT > VarC) THEN
IF VarG = 14 THEN

DISPLAY “First”
ELSE

DISPLAY “Second”
END-IF

ELSE
DISPLAY “Third”

END-IF

IF (VarA < 10) AND (VarB NOT > VarC) THEN
IF VarG = 14 THEN

DISPLAY “First”
ELSE

DISPLAY “Second”
END-IF

ELSE
DISPLAY “Third”

END-IF

VarA VarB VarC VarG DISPLAY
3 4 15 14
3 4 15 15
3 4 3 14
13 4 15 14

VarAVarA VarBVarB VarCVarC VarGVarG DISPLAYDISPLAY
3 4 15 14
3 4 15 15
3 4 3 14
13 4 15 14

T T T First
T T F Second
T F Third
F T Third

Conditions
Nested IFs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation178

§ Wherever a condition can occur, such as in an IF statement or an
EVALUATE or a PERFORM..UNTIL, a CONDITION NAME (Level
88) may be used.

§ A Condition Name is essentially a BOOLEAN variable which is either
TRUE or FALSE.

§ Example.
IF StudentRecord = HIGH-VALUES THEN Action

The statement above may be replaced by the one below. The condition
name EndOfStudentFile may be used instead of the condition
StudentRecord = HIGH-VALUES.

IF EndOfStudentFile THEN Action

444444444 3444444444 21

Falseor TRUE
either isCondition

Action THEN VarB THAN GREATERVarA IF

Conditions
Condition Names

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation179

§ Condition Names are defined in the DATA DIVISION using the special
level number 88.

§ They are always associated with a data item and are defined
immediately after the definition of the data item.

§ A condition name takes the value TRUE or FALSE depending on the
value in its associated data item.

§ A Condition Name may be associated with ANY data item whether it is
a group or an elementary item.

§ The VALUE clause is used to identify the values which make the
Condition Name TRUE.

K
 HighValue

THRU
THROUGH

 LowValue

Literal

VALUES
VALUE

 ameConditionN 88

Conditions
Defining Condition Names

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation180

01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1.
88 Limerick VALUE 2.
88 Cork VALUE 3.
88 Galway VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1.
88 Limerick VALUE 2.
88 Cork VALUE 3.
88 Galway VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

IF Limerick
DISPLAY "Hey, we're home."

END-IF
IF UniversityCity

PERFORM CalcRentSurcharge
END-IF

IF Limerick
DISPLAY "Hey, we're home."

END-IF
IF UniversityCity

PERFORM CalcRentSurcharge
END-IF

Dublin FALSE
Limerick FALSE
Cork FALSE
Galway FALSE
Sligo TRUE
Waterford FALSE
UniversityCity FALSE

City CodeCity Code

55

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation181

01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1.
88 Limerick VALUE 2.
88 Cork VALUE 3.
88 Galway VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1.
88 Limerick VALUE 2.
88 Cork VALUE 3.
88 Galway VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

IF Limerick
DISPLAY "Hey, we're home."

END-IF
IF UniversityCity

PERFORM CalcRentSurcharge
END-IF

IF Limerick
DISPLAY "Hey, we're home."

END-IF
IF UniversityCity

PERFORM CalcRentSurcharge
END-IF

Dublin FALSE
Limerick TRUE
Cork FALSE
Galway FALSE
Sligo FALSE
Waterford FALSE
UniversityCity TRUE

City CodeCity Code
22

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation182

01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1.
88 Limerick VALUE 2.
88 Cork VALUE 3.
88 Galway VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1.
88 Limerick VALUE 2.
88 Cork VALUE 3.
88 Galway VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

IF Limerick
DISPLAY "Hey, we're home."

END-IF
IF UniversityCity

PERFORM CalcRentSurcharge
END-IF

IF Limerick
DISPLAY "Hey, we're home."

END-IF
IF UniversityCity

PERFORM CalcRentSurcharge
END-IF

Dublin FALSE
Limerick FALSE
Cork FALSE
Galway FALSE
Sligo FALSE
Waterford TRUE
UniversityCity FALSE

City CodeCity Code
66

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation183

01 InputChar PIC X.
88 Vowel VALUE "A","E","I","O","U".
88 Consonant VALUE "B" THRU "D", "F","G","H"

"J" THRU "N", "P" THRU "T"
"V" THRU "Z".

88 Digit VALUE "0" THRU "9".
88 LowerCase VALUE "a" THRU "z".
88 ValidChar VALUE "A" THRU "Z","0" THRU "9".

01 InputChar PIC X.
88 Vowel VALUE "A","E","I","O","U".
88 Consonant VALUE "B" THRU "D", "F","G","H"

"J" THRU "N", "P" THRU "T"
"V" THRU "Z".

88 Digit VALUE "0" THRU "9".
88 LowerCase VALUE "a" THRU "z".
88 ValidChar VALUE "A" THRU "Z","0" THRU "9".

IF ValidChar
DISPLAY "Input OK."

END-IF
IF LowerCase

DISPLAY "Not Upper Case"
END-IF
IF Vowel

Display "Vowel entered."
END-IF

IF ValidChar
DISPLAY "Input OK."

END-IF
IF LowerCase

DISPLAY "Not Upper Case"
END-IF
IF Vowel

Display "Vowel entered."
END-IF

Vowel TRUE
Consonant FALSE
Digit FALSE
LowerCase FALSE
ValidChar TRUE

Input CharInput Char

EE

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation184

01 InputChar PIC X.
88 Vowel VALUE "A","E","I","O","U".
88 Consonant VALUE "B" THRU "D", "F","G","H"

"J" THRU "N", "P" THRU "T"
"V" THRU "Z".

88 Digit VALUE "0" THRU "9".
88 LowerCase VALUE "a" THRU "z".
88 ValidChar VALUE "A" THRU "Z","0" THRU "9".

01 InputChar PIC X.
88 Vowel VALUE "A","E","I","O","U".
88 Consonant VALUE "B" THRU "D", "F","G","H"

"J" THRU "N", "P" THRU "T"
"V" THRU "Z".

88 Digit VALUE "0" THRU "9".
88 LowerCase VALUE "a" THRU "z".
88 ValidChar VALUE "A" THRU "Z","0" THRU "9".

IF ValidChar
DISPLAY "Input OK."

END-IF
IF LowerCase

DISPLAY "Not Upper Case"
END-IF
IF Vowel

Display "Vowel entered."
END-IF

IF ValidChar
DISPLAY "Input OK."

END-IF
IF LowerCase

DISPLAY "Not Upper Case"
END-IF
IF Vowel

Display "Vowel entered."
END-IF

Vowel FALSE
Consonant FALSE
Digit TRUE
LowerCase FALSE
ValidChar TRUE

Input CharInput Char

44

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation185

01 InputChar PIC X.
88 Vowel VALUE "A","E","I","O","U".
88 Consonant VALUE "B" THRU "D", "F","G","H"

"J" THRU "N", "P" THRU "T"
"V" THRU "Z".

88 Digit VALUE "0" THRU "9".
88 LowerCase VALUE "a" THRU "z".
88 ValidChar VALUE "A" THRU "Z","0" THRU "9".

01 InputChar PIC X.
88 Vowel VALUE "A","E","I","O","U".
88 Consonant VALUE "B" THRU "D", "F","G","H"

"J" THRU "N", "P" THRU "T"
"V" THRU "Z".

88 Digit VALUE "0" THRU "9".
88 LowerCase VALUE "a" THRU "z".
88 ValidChar VALUE "A" THRU "Z","0" THRU "9".

IF ValidChar
DISPLAY "Input OK."

END-IF
IF LowerCase

DISPLAY "Not Upper Case"
END-IF
IF Vowel

Display "Vowel entered."
END-IF

IF ValidChar
DISPLAY "Input OK."

END-IF
IF LowerCase

DISPLAY "Not Upper Case"
END-IF
IF Vowel

Display "Vowel entered."
END-IF

Vowel FALSE
Consonant FALSE
Digit FALSE
LowerCase TRUE
ValidChar FALSE

Input CharInput Char

gg

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation186

01 EndOfFileFlag PIC 9 VALUE 0.
88 EndOfFile VALUE 1.

01 EndOfFileFlag PIC 9 VALUE 0.
88 EndOfFile VALUE 1.

READ InFile
AT END MOVE 1 TO EndOfFileFlag

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END MOVE 1 TO EndOfFileFlag
END-READ

END-PERFORM

READ InFile
AT END MOVE 1 TO EndOfFileFlag

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END MOVE 1 TO EndOfFileFlag
END-READ

END-PERFORM

EndOfFile

EndOfFileFlagEndOfFileFlag

00

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation187

01 EndOfFileFlag PIC 9 VALUE 0.
88 EndOfFile VALUE 1.

01 EndOfFileFlag PIC 9 VALUE 0.
88 EndOfFile VALUE 1.

READ InFile
AT END MOVE 1 TO EndOfFileFlag

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END MOVE 1 TO EndOfFileFlag
END-READ

END-PERFORM

READ InFile
AT END MOVE 1 TO EndOfFileFlag

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END MOVE 1 TO AT END MOVE 1 TO EndOfFileFlagEndOfFileFlag
END-READ

END-PERFORM

EndOfFileFlagEndOfFileFlag

11
EndOfFile

Conditions
Example

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation188

01 FILLER PIC 9 VALUE 0.
88 EndOfFile VALUE 1.
88 NotEndOfFile VALUE 0.

01 FILLER PIC 9 VALUE 0.
88 EndOfFile VALUE 1.
88 NotEndOfFile VALUE 0.

READ InFile
AT END SET EndOfFile TO TRUE

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END SET EndOfFile TO TRUE
END-READ

END-PERFORM
Set NotEndOfFile TO TRUE.

READ InFile
AT END SET EndOfFile TO TRUE

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END SET EndOfFile TO TRUE
END-READ

END-PERFORM
Set NotEndOfFile TO TRUE.

EndOfFile 1
NotEndOfFile 0

FILLERFILLER

00

Conditions
Using the SET verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation189

01 FILLER PIC 9 VALUE 0.
88 EndOfFile VALUE 1.
88 NotEndOfFile VALUE 0.

01 FILLER PIC 9 VALUE 0.
88 EndOfFile VALUE 1.
88 NotEndOfFile VALUE 0.

READ InFile
AT END SET EndOfFile TO TRUE

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END SET EndOfFile TO TRUE
END-READ

END-PERFORM
Set NotEndOfFile TO TRUE.

READ InFile
AT END SET EndOfFile TO TRUE

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END SET AT END SET EndOfFileEndOfFile TO TRUETO TRUE
END-READ

END-PERFORM
Set NotEndOfFile TO TRUE.

EndOfFile 1
NotEndOfFile 0

FILLERFILLER

11

Conditions
Using the SET verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation190

01 FILLER PIC 9 VALUE 0.
88 EndOfFile VALUE 1.
88 NotEndOfFile VALUE 0.

01 FILLER PIC 9 VALUE 0.
88 EndOfFile VALUE 1.
88 NotEndOfFile VALUE 0.

READ InFile
AT END SET EndOfFile TO TRUE

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END SET EndOfFile TO TRUE
END-READ

END-PERFORM
Set NotEndOfFile TO TRUE.

READ InFile
AT END SET EndOfFile TO TRUE

END-READ
PERFORM UNTIL EndOfFile

Statements
READ InFile

AT END SET EndOfFile TO TRUE
END-READ

END-PERFORM
Set NotEndOfFile TO TRUE.

EndOfFile 1
NotEndOfFile 0

FILLERFILLER

00

Conditions
Using the SET verb

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation191

[]

[]
EVALUATE-END

lockStatementB OTHER WHEN

 lock StatementB

ssionArithExpre
Literal
Identifier

THROUGH
THRU

ssionArithExpre

Literal
Identifier

 NOT

FALSE
TRUE
Condition
ANY

 WHEN

FALSE
TRUE

ssionArithExpre
sionCondExpres

Literal
Identifier

KK

K

EVALUATE

Conditions
The Evaluate

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation192

EVALUATE TRUE Position
WHEN L-Arrow 2 THRU 10PERFORM MoveLeft
WHEN R-Arrow 1 THRU 9PERFORM MoveRight
WHEN L-Arrow 1 MOVE 10 TO Position
WHEN R-Arrow 10 MOVE 1 TO Position
WHEN DeleteKey 1 PERFORM CantDelete WHEN Character

ANY PERFORM InsertChar WHEN OTHER PERFORM DisplayErrorMessage
END-EVALUATE

W I L L I A M S W I L L I A M S
1 2 3 4 5 6 7 8 9 10

Conditions
The Evaluate

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation193

EVALUATE Gender TRUE TRUE
WHEN "M" Age<20 ANY MOVE 5 TO Bonus
WHEN "F" Age<20 ANY MOVE 10 TO Bonus
WHEN "M" Age>19 AND <41 Service<10 MOVE 12 TO Bonus
WHEN "F" Age>19 AND <41 Service<10 MOVE 13 TO Bonus
WHEN "M" Age>40 Service<10 MOVE 20 TO Bonus
WHEN "F" Age>40 Service<10 MOVE 15 TO Bonus

: : : : :
: : : : :

WHEN "F" ANY Service>20 MOVE 25 TO Bonus
END-EVALUATE.

GenderGender M F M F M F M F
Age Age <20 <20 20-40 20-40 40> 40> 20-40 20-40 etc
ServiceService Any Any <10 <10 <10 <10 10-20 10-20 etc
% Bonus% Bonus 5 10 12 13 20 15 14 23

Conditions
Decision Table Implementation

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation194

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation195

§ Introduction to tables.
§ Declaring tables.
§ Processing tables using the PERFORM..VARYING.

Tables and the PERFORM ... VARYING
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation196

The program to
calculate the total
taxes paid for the
country is easy to
write.

BUT.
What do we do if we
want to calculate the
taxes paid in each
county?

TaxTotal
Variable = Named location in memory

PROCEDURE DIVISION.
Begin.

OPEN INPUT TaxFile
READ TaxFile

AT END SET EndOfTaxFile TO TRUE
END-READ
PERFORM UNTIL EndOfTaxFile

ADD TaxPaid TO TaxTotal
READ TaxFile

AT END SET EndOfTaxFile TO TRUE
END-READ

END-PERFORM.
DISPLAY "Total taxes are ", TaxTotal
CLOSE TaxFile
STOP RUN.

PAYENum CountyNum TaxPaid

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation197

PROCEDURE DIVISION.
Begin.

OPEN INPUT TaxFile
READ TaxFile

AT END SET EndOfTaxFile TO TRUE
END-READ
PERFORM SumCountyTaxes UNTIL EndOfTaxFile
DISPLAY "County 1 total is ", County1TaxTotal

: : : 24 Statements : : :: : : 24 Statements : : :
DISPLAY "County 26 total is ", County26TaxTotal
CLOSE TaxFile
STOP RUN.

SumCountyTaxes.
IF CountyNum = 1 ADD TaxPaid TO County1TaxTotal
END-IF

: : : 24 Statements : : :: : : 24 Statements : : :
IF CountyNum = 26 ADD TaxPaid TO County26TaxTotal
END-IF
READ TaxFile

AT END SET EndOfTaxFile TO TRUE
END-READ 58 Statements

County1
TaxTotal

County2
TaxTotal

County3
TaxTotal

County4
TaxTotal

County5
TaxTotal

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation198

10
1 2 3 4 5 61 2 3 4 5 6
MOVE 10 TO CountyTax(5)MOVE 10 TO CountyTax(5)
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyNumCountyTax(CountyNum))
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyNumCountyTax(CountyNum + 2)+ 2)

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence.

A table is a contiguous sequence of memory locations
called elementselements, , which all have the same namesame name, and are
uniquely identified by that name and by their positionposition in
the sequence.

CountyTax

Tables and the PERFORM ... VARYING
Tables/Arrays

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation199

551 2 3 4 5 61 2 3 4 5 6
MOVE 10 TO CountyTax(5)MOVE 10 TO CountyTax(5)
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyTax(CountyNumCountyNum))
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyNumCountyTax(CountyNum + 2)+ 2)

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence.

A table is a contiguous sequence of memory locations
called elementselements, , which all have the same namesame name, and are
uniquely identified by that name and by their positionposition in
the sequence.

1010

55 2

CountyTax

Tables and the PERFORM ... VARYING
Tables/Arrays

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation200

5555
1 2 3 4 5 61 2 3 4 5 6
MOVE 10 TO CountyTax(5)MOVE 10 TO CountyTax(5)
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyNumCountyTax(CountyNum))
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyTax(CountyNumCountyNum + 2+ 2))

1010

55 2

55

CountyTax

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence.

A table is a contiguous sequence of memory locations
called elementselements, , which all have the same namesame name, and are
uniquely identified by that name and by their positionposition in
the sequence.

Tables and the PERFORM ... VARYING
Tables/Arrays

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation201

55555555
1 2 3 4 5 61 2 3 4 5 6

MOVE 10 TO CountyTax(MOVE 10 TO CountyTax(55))
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyTax(CountyNumCountyNum))
ADD ADD TaxPaidTaxPaid TO TO CountyTax(CountyTax(CountyNumCountyNum + 2+ 2))

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence. The position index is called a subscript.

A table is a contiguous sequence of memory locations
called elementselements, , which all have the same namesame name, and are
uniquely identified by that name and by their positionposition in
the sequence. The position index is called a subscript.

1010
Subscript

CountyTax

Tables and the PERFORM ... VARYING
Tables/Arrays

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation202

PROCEDURE DIVISION.
Begin.

OPEN INPUT TaxFile
READ TaxFile

AT END SET EndOfTaxFile TO TRUE
END-READ
PERFORM UNTIL EndOfTaxFile

ADD TaxPaid TO CountyTax(CountyNum)
READ TaxFile

AT END SET EndOfTaxFile TO TRUE
END-READ

END-PERFORM.
PERFORM VARYING Idx FROM 1 BY 1

UNTIL Idx GREATER THAN 26
DISPLAY "County ", CountyNum

" tax total is " CountyTax(Idx)
END-PERFORM
CLOSE TaxFile
STOP RUN.

Subscript

9 Statements

1 2 3 4 5 61 2 3 4 5 6
CountyTax

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation203

TaxRecord.
PAYENum CountyName TaxPaid

1 2 3 4 5 61 2 3 4 5 6

CountyTax

IF CountyName = "CARLOW"
ADD TaxPaid TO CountyTax(1)

END-IF
IF CountyName = "CAVAN"

ADD TaxPaid TO CountyTax(2)
END-IF
: : : : :: : : : :
: : : : :: : : : :

24 TIMES24 TIMES

A-89432 CLARE 7894.55

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation204

PERFORM VARYING Idx FROM 1 BY 1
UNTIL County(Idx) = CountyName

END-PERFORM
ADD TaxPaid TO CountyTax(Idx)

1 2 3 4 5 61 2 3 4 5 6

CountyTax

A-89432 CLARE 7894.55
TaxRecord.
PAYENum CountyName TaxPaid Idx

1 2 3 4 5 61 2 3 4 5 6
CORKCORKCAVANCAVAN DONEGALDONEGALCARLOWCARLOW CLARECLARE DUBLINDUBLIN

County
11

500.50 125.75 1000.00 745.55 345.23 123.45500.50 125.75 1000.00 745.55 345.23 123.45

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation205

PERFORM VARYING Idx FROM 1 BY 1
UNTIL County(Idx) = CountyName

END-PERFORM
ADD TaxPaid TO CountyTax(Idx)

1 2 3 4 5 61 2 3 4 5 6

CountyTax

A-89432 CLARE 7894.55
TaxRecord.
PAYENum CountyName TaxPaid Idx

1 2 3 4 5 61 2 3 4 5 6
CORKCORKCAVANCAVAN DONEGALDONEGALCARLOWCARLOW CLARECLARE DUBLINDUBLIN

County
22

500.50 125.75 1000.00 745.55 345.23 123.45500.50 125.75 1000.00 745.55 345.23 123.45

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation206

PERFORM VARYING Idx FROM 1 BY 1
UNTIL County(Idx) = CountyName

END-PERFORM
ADD TaxPaid TO CountyTax(Idx)

1 2 3 4 5 61 2 3 4 5 6

CountyTax

A-89432 CLARE 7894.55
TaxRecord.
PAYENum CountyName TaxPaid Idx

1 2 3 4 5 61 2 3 4 5 6
CORKCORKCAVANCAVAN DONEGALDONEGALCARLOWCARLOW CLARECLARE DUBLINDUBLIN

County
33

500.50 125.75 1000.00 745.55 345.23 123.45500.50 125.75 1000.00 745.55 345.23 123.45

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation207

PERFORM VARYING Idx FROM 1 BY 1
UNTIL County(Idx) = CountyName

END-PERFORM
ADD TaxPaid TO CountyTax(Idx)

1 2 3 4 5 61 2 3 4 5 6

CountyTax

A-89432 CLARE 7894.55
TaxRecord.
PAYENum CountyName TaxPaid Idx

1 2 3 4 5 61 2 3 4 5 6
CORKCORKCAVANCAVAN DONEGALDONEGALCARLOWCARLOW CLARECLARE DUBLINDUBLIN

County
33

500.50 125.75 500.50 125.75 8894.558894.55 745.55 345.23 123.45745.55 345.23 123.45

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation208

1 2 3 4 5 61 2 3 4 5 6

TaxTotals
CountyTax

000000 000000 000000 000000 000000 000000

01 01 TaxTotalsTaxTotals..
02 02 CountyTaxCountyTax PIC 9(10)V99 PIC 9(10)V99

OCCURS 26 TIMES.OCCURS 26 TIMES.
oror

02 02 CountyTaxCountyTax OCCURS 26 TIMES OCCURS 26 TIMES
PIC 9(10)V99.PIC 9(10)V99.

e.g. e.g.
MOVE ZEROS TO MOVE ZEROS TO TaxTotalsTaxTotals..
MOVE 20 TO CountyTax(5).MOVE 20 TO CountyTax(5).

Tables and the PERFORM ... VARYING
Declaring Tables

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation209

1 2 3 1 2 3 4 4 5 65 6
25

TaxTotals

000000 000000

CountyTax PayerCount
CountyTaxDetails01 TaxTotals.

02 CountyTaxDetails OCCURS 26 TIMES.
03 CountyTax PIC 9(10)V99.
03 PayerCount PIC 9(7).

e.g. MOVE 25 TO PayerCount(2).
MOVE 67 TO CountyTax(5).
MOVE ZEROS TO CountyTaxDetails(3).

67

Tables and the PERFORM ... VARYING
Group Items as Elements

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation210

[]

PERFORM-ENDlock StatementB

Condition2 UNTIL
Literal

6Identifier
 BY

4
5

 FROM
IndexName3

4Identifier
 AFTER

Condition1 UNTIL
Literal

3Identifier
 BY

2
2

 FROM
IndexName1
Identifer1

 VARYING

AFTER
BEFORE

 TEST WITH EndProc
THROUGH
THRU

 1stProc PERFORM

K

Literal
IndexName
Identifier

Literal
IndexName
Identifier

Tables and the PERFORM ... VARYING
PERFORM..VARYING Syntax

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation211

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Idx1 = 3

Loop Body

True

Move 1 to Idx1Move 1 to Idx1

Next Statement

Inc Idx1

False

Idx1
11

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation212

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Idx1
11

Loop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1

False
Idx1 = 3

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation213

11

Idx1
11

Loop BodyLoop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1

False
Idx1 = 3

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation214

11

Idx1
22

Loop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1Inc Idx1

False
Idx1 = 3

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation215

11

Idx1
22

Loop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1

False
Idx1 = 3

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation216

11
22

Idx1
22

Loop BodyLoop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1

False
Idx1 = 3

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation217

11
22

Idx1
33

Loop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1Inc Idx1

False
Idx1 = 3

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation218

11
22

Idx1
33

Loop Body

True

Move 1 to Idx1

Next Statement

Inc Idx1

False
Idx1 = 3

Exit value = 3Exit value = 3

PERFORM VARYING Idx1 FROM 1 BY 1 UNTIL
Idx1 EQUAL TO 3

DISPLAY Idx1
END-PERFORM.

Tables and the PERFORM ... VARYING

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation219

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation220

§ Why we use COBOL.

§ The problem of program maintenance.

§ How Cobol programs should be written.

§ Efficiency vs Clarity.

§ Producing a good design.

§ Introduction to design notations.

§ Guidelines for writing Cobol programs.

Designing Programs
Overview

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation221

§ COBOL is an acronym standing for Common Business Oriented
Language.

§ COBOL programs are (mostly) written for the vertical market.

§ COBOL programs tend to be long lived.

§ Because of this longevity ease of program maintenance is an
important consideration.

§ Why is program maintenance important?

Designing Programs
COBOL

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation222

Maintenance Costs are only as low as this because many systems become so
unmaintainable early in their lives that they have to be SCRAPPED !!

:- B. Boehm

Maintenance
67%

Testing
15%Coding

7%
Analysis

and
Design 9%

Zelkowitz
ACM 1978

p202

Designing Programs
Cost of a system over its entire life

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation223

§ Program maintenance is an umbrella term that covers;
1. Changing the program to fix bugs that appear in the system.

2. Changing the program to reflect changes in the environment.

3. Changing the program to reflect changes in the users perception of the
requirements.

4. Changing the program to include extensions to the user requirements (i.e.
new requirements).

§ What do these all have in common?

CHANGING THE PROGRAM.

Designing Programs
Program Maintenance

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation224

§ You should write your programs with the expectation that they
will have to be changed.

§ This means that you should;

® write programs that are easy to read.

® write programs that are easy to understand.

® write programs that are easy to change.

§ You should write your programs as you would like them written if
you had to maintain them.

Designing Programs
How should write your programs?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation225

§ Many programmers are overly concerned about making their
programs as efficient as possible (in terms of the speed of execution
or the amount of memory used).

§ But the proper concern of a programmer, and particularly a COBOL
programmer, is not this kind of efficiency, it is clarity.

§ As a rule 70% of the work of the program will be done in 10% of the
code.

§ It is therefore a pointless exercise to try to optimize the whole
program, especially if this has to be done at the expense of clarity.

§ Write your program as clearly as possible and then, if its too slow,
identify the 10% of the code where the work is being done and
optimize it.

Designing Programs
Efficiency vs Clarity

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation226

§ We shouldn’t design our programs, when we want to create programs that
do not work.

§ We shouldn’t design when we want to produce programs that do not solve
the problem specified.

§ When we want to create programs that;
get the wrong inputs,
or perform the wrong transformations on them
or produce the wrong outputs

then we shouldn’t bother to design our programs.

§ But if we want to create programs that work, we cannot avoid design.

§ The only question is;
will it be a good design or a bad design

Designing Programs
When shouldn’t we design our programs?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation227

§ The first step to producing a good design is to design consciously.

§ Subconscious design means that design is done while constructing
the program. This never leads to good results.

§ Conscious design starts by separating the design task from the task
of program construction.

§ Design, consists of devising a solution to the problem specified.

§ Construction, consists of taking the design and encoding the solution
using a particular programming language.

Designing Programs
Producing a Good Design

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation228

§ Separating program design from program construction makes both tasks
easier.

§ Designing before construction, allows us to plan our solution to the
problem - instead of stumbling from one incorrect solution to another.

§ Good program structure results from planing and design. It is unlikely to
result from ad hoc tinkering.

§ Designing helps us to get an overview of the problem and to think about
the solution without getting bogged down by the details of construction.

§ It helps us to iron out problems with the specification and to discover any
bugs in our solution before we commit it to code (see next slide).

§ Design allows us to develop portable solutions

Designing Programs
Why separate design from construction?

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation229

In ProductionIn Production
x82x82

In In
ConstructionConstruction

x20x20

11

In Design

Figures from IBM in Santa Clara.

Designing Programs
Relative cost of fixing a bug

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation230

§ A number of notations have been suggested to assist the programmer with
the task of program design.

§ Some notations are textual and others graphical.

§ Some notations can actually assist in the design process.

§ While others merely articulate the design.

Designing Programs
Design Notations

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation231

Designing Programs
Flowcharts as design tools

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation232

Designing Programs
Structured Flowcharts as design tools

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation233

For each transaction record do the following
IF the record is a receipt then

add 1 to the ReceiptsCount
add the Amount to the Balance

otherwise
add 1 to the PaymentsCount
subtract the Amount from the Balance

EndIF
add 1 to the RecordCount
Write the Balance to the CustomerFile

When the file has been processed
Output the ReceiptsCount

the PaymentsCount
and the RecordCount

For each transaction record do the following
IF the record is a receipt then

add 1 to the ReceiptsCount
add the Amount to the Balance

otherwise
add 1 to the PaymentsCount
subtract the Amount from the Balance

EndIF
add 1 to the RecordCount
Write the Balance to the CustomerFile

When the file has been processed
Output the ReceiptsCount

the PaymentsCount
and the RecordCount

Designing Programs
Structured English

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation234

Designing Programs
The Jackson Method

ISSC Shanghai, AMS, GCG

COBOL Programming Fundamental © 2004 IBM Corporation235

UpdateCustomerBalance

OpenFiles
ProcessRecords

RecordType ?

ProcessReceipt

ProcessPayment

WriteNewBalance
PrintTotals
CloseFiles

⊕

Designing Programs
Warnier-Orr Diagrams

IBM Solution & Service Company (China)

2004/11 © 2004 IBM Corporation

Any Existing Process Could Be Improved!Any Existing Process Could Be Improved!

Thank you very much!

